The Fast Gamma ray Spectrometer (FGS): a Multi-mission Instrument to Detect TGFs and Astrophysical Gamma ray Events

Mélody Pallu¹, Philippe Laurent^{2,3}, Damien Pailot³, Éric Bréelle³, Sylvie Blin³, Claude Chapron³, Ronan Oger³, Kévin Biernacki³, Stéphane Dheilly³

 ¹Université Paris Cité, CNRS, CNES, Astroparticule et Cosmologie pallu@apc.in2p3.fr
 ²Departement d'Astrophysique, Universite Paris-Saclay, Universite Paris Cite, CEA, CNRS, AIM, Gif sur Yvette ³Universite Paris Cite, CNRS, Astroparticule et Cosmologie

PNST 2024

January 12th, 2024 - Marseille, France

ContextScienceObjectiveInstrument descriptionDevelopmentFuture00000000000

Context: Taranis' launch failure

 Taranis was a microsatellite funded by CNES, which objective was to study energetic and luminous events produced by Earth thunderstorms, namely TGFs and TLEs

- Taranis' instruments:
 - IDEE: electron detectors
 - MCP: 2 cameras and 4 photometers
 - Electric field low and high frequency antennas
 - $\circ~$ XGRE: X-ray and Gamma-Ray scintillation detector
- In November 2020, after tens of years of development, the launch failed \rightarrow satellite loss

Fig: Illustration of Taranis' satellite

Context: Taranis' launch failure

 Taranis was a microsatellite funded by CNES, which objective was to study energetic and luminous events produced by Earth thunderstorms, namely TGFs and TLEs

- Taranis' instruments:
 - IDEE: electron detectors
 - MCP: 2 cameras and 4 photometers
 - $\circ~$ Electric field low and high frequency antennas
 - XGRE: X-ray and Gamma-Ray scintillation detector
- In November 2020, after tens of years of development, the launch failed \rightarrow satellite loss

Fig: Illustration of Taranis' satellite

Context	Science	Objective	Instrument description	Development	Future
0	• 0 0	0	0	0000	000

Science: Atmospheric electricity events

• Events produced in association with thunderstorms:

Transient Luminous Events (TLEs)

Terrestrial Gamma ray Flashes (TGFs)

ightarrow Gamma rays

 $\rightarrow \mathsf{Visible}\ \mathsf{Light}$

Context	Science	Objective	Instrument description	Development	Future
0	• 0 0	0	0	0000	000

Science: Atmospheric electricity events

• Events produced in association with thunderstorms:

 \rightarrow Visible Light

Terrestrial Gamma ray Flashes (TGFs) Gamma Rays \rightarrow Gamma rays

Science: Terrestrial Gamma ray Flashes

TGFs = Bursts of gamma rays produced in thunderstorms

Characteristics:

- Mostly associated with the first stages of +IC lightning
- Short duration: $< 100 \ \mu s$
- High-energy photons: tens of keV to ${\sim}40~{
 m MeV}$
- Very bright: $\lesssim 1 \text{ ph/cm}^2$ when observed by satellite
- Occurrence: 400,000 TGFs/year estimated for Fermi-observable TGFs [Briggs et al., 2013]

Context	Science	Objective	Instrument description	Development	Future
0	00	0	0	0000	000

Current TGF detections

- Mostly by satellite:
 - Astrophysics satellites (e.g., Fermi, AGILE, RHESSI)
 - Only few space instruments designed to detect TGFs (e.g., ASIM on the ISS)
- Some ground-based detections for downward TGFs (e.g., with the **Telescope Array**)
- Single-point aircraft detections [e.g., Dwyer et al., 2012; Smith et al., 2011; Østgaard et al., AGU, 2023]

+ hundreds of a new type of TGFs, called FGFs (Flickering Gamma ray Flashes), have been very recently detected by aircraft (presented at AGU23, San Francisco)

> Østgaard et al., AGU23, San Francisco, AE22A-03 Results from the ALOFT mission: a flight campaign for TGF and gamma-ray glow observations over Central America and the Caribbean in July 2023

+ hundreds of a new type of TGFs, called FGFs (Flickering Gamma ray Flashes), have been very recently detected by aircraft (presented at AGU23, San Francisco)

> Østgaard et al., AGU23, San Francisco, AE22A-03 Results from the ALOFT mission: a flight campaign for TGF and gamma-ray glow observations over Central America and the Caribbean in July 2023

Context	Science	Objective	Instrument description	Development	Future
0	0 0 ●	0	0	0000	000

Current TGF detections

- Mostly by satellite:
 - Astrophysics satellites (e.g., Fermi, AGILE, RHESSI)
 - Only few space instruments designed to detect TGFs (e.g., ASIM on the ISS)
- Some ground-based detections for downward TGFs (e.g., with the **Telescope Array**)
- Single-point aircraft detections [e.g., Dwyer et al., 2012; Smith et al., 2011; Østgaard et al., AGU, 2023]

+ hundreds of a new type of TGFs, called FGFs (Flickering Gamma ray Flashes), have been very recently detected by aircraft (presented at AGU23, San Francisco)

→ Need to develop instruments designed to detect TGFs

Context	Science	Objective	Instrument description	Development	Future
0	000	\bullet	0	0000	000
Objective					

Develop a new gamma ray spectrometer multi-mission for TGF detections

\rightarrow R&T in collaboration with LESIA and CNES

Space multi-mission instrument Fast Gamma ray Spectrometer (FGS):

- To fly on nanosatellites or satellites
- To detect different types of gamma events: TGFs, GRBs, Solar flares
- Scintillators adaptable in types, sizes, ...

New instrument: Fast Gamma ray Spectrometer (FGS)

- Components choice: GaGG + SiPM + ASIC
- Electronics development: ASIC/ADC board, power board
- Mechanical structure: for four 2x2-modules

Context	Science	Objective	Instrument description	Development	Future
0	000	0	0	$\bullet \circ \circ \circ$	000

Development: crystal comparison

- 2 suppliers (EPIC, C&A)
- 3 types of GaGG (normal, fast, high-resolution)
- Surface state (polished/unpolished)
- Size of the Vikuiti window

ContextScienceObjectiveInstrument descriptionDevelopmentFutureOOOOOOOOOOOOOOO

Development: crystal comparison

Comparison of gain and resolution for:

- 2 suppliers (EPIC, C&A)
- 3 types of GaGG (normal, fast, high-resolution)
- Surface state (polished/unpolished)
- Size of the Vikuiti window

\rightarrow GaGG-F (EPIC), unpolished

Because:

fast and good gain and resolution

Context	Science	Objective	Instrument description	Development	Future
0	000	0	0	$\circ \bullet \circ \circ$	000

Development: luminescence

• Phenomenon of **luminescence** discovered with GaGG scintillators:

When GaGG crystal exposed to visible light

- \rightarrow luminescence produced by the GaGG crystals
- \rightarrow SiPM sees lots of light
- \rightarrow seen as a high number of low energy counts in the energy spectrum
- \rightarrow detector gain is reduced because of the current involved

\rightarrow Question of the impact of protons in space (South Atlantic Anomaly) on GaGG performances

ContextScienceObjectiveInstrument descriptionDevelopmentFutureOOOOOOOOOOOOOOO

Development: proton irradiation

 \rightarrow GaGG measurements in proton accelerator performed in March:

ARRONAX proton accelerator (in Nantes)

Proton beam maximizing the proton flux in the SAA:

- Flux: 10,000 pr/cm²/s
- Energy: 70 MeV
- Duration: $\sim 15 \text{ min}$

Context	Science	Objective	Instrument description	Development	Future
0	000	0	0	000	000

Development: proton irradiation

Results:

- Fast GaGG (EPIC) is subject to luminescence after proton irradiation
- Luminescence decay time is estimated to be low: ${\sim}1$ min 30

ightarrow Luminescence << an orbit duration decay time (~ 1h30)

 \rightarrow These results and others will be published in Pallu et al. (in preparation)

Context	Science	Objective	Instrument description	Development	Future
0	000	0	0	0000	• 0 0

Future of FGS: balloon flight in June 2024

- Very convenient to validate instrument working in conditions close to space conditions
- CNES proposes balloon flights with stratospheric balloons: ~ 10 h of flight at ~ 30 km of altitude, in Kiruna, Sweden (high latitude)
- Scientific objective: no TGF or GRB expected, but we should detect Crab pulsar, see simulation:

ContextScienceObjectiveInstrument descriptionDevelopmentFutureOOOOOOOOOO • O

Future of FGS: possible future missions

BEES (Bursty Energetic Events in Space):

- Project proposed at CNES/PASO
- Nanosatellite constellation in formation flight

• BEES will also detect Gamma-Ray Bursts (GRBs)

The flux measurement done by the different nanosats of the constellation will give us an estimate of the GRB location, with a precision of few degrees (TBC)

ContextScienceObjectiveInstrument descriptionDevelopmentFutureOOOOOOOOOO • O

Future of FGS: possible future missions

BEES (Bursty Energetic Events in Space):

- Project proposed at CNES/PASO
- Nanosatellite constellation in formation flight

• BEES will also detect Gamma-Ray Bursts (GRBs)

The flux measurement done by the different nanosats of the constellation will give us an estimate of the GRB location, with a precision of few degrees (TBC)

ContextScienceObjectiveInstrument descriptionDevelopmentFutureOOOOOOOOOO • O

Future of FGS: possible future missions

BEES (Bursty Energetic Events in Space):

- Project proposed at CNES/PASO
- Nanosatellite constellation in formation flight

• BEES will also detect Gamma-Ray Bursts (GRBs)

The flux measurement done by the different nanosats of the constellation will give us an estimate of the GRB location, with a precision of few degrees (TBC)

Context	Science	Objective	Instrument description	Development	Future
0	000	Ō	0	0000	00 •

Future of FGS: possible future missions

Our work on FGS may also be used for the gamma-ray instrument of the solar SPARK mission, called LISSAN:

- > SPARK is a high energy mission proposed for M7 for the study of solar flares
- SPARK has not been selected but the consortium goes on to search for new flight opportunities with ESA or NASA
- The LISSAN high energy detector is based upon our work on GAGG + SiPM detectors. It is similar to FGS, with GAGG crystals of 2.5×2.5×10 cm size

see: Ryan, D.F.; et al. **The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept**. *Aerospace* **2023**, *10*, 985. https://doi.org/10.3390/ aerospace10120985

Figure: FGS detector adapted for LISSAN and proposed for SPARK

Context	Science	Objective	Instrument description	Development	Future
0	000	0	0	0000	00

Future of FGS: possible future missions

Our work on FGS may also be used for the gamma-ray instrument of the solar SPARK mission, called LISSAN:

- > SPARK is a high energy mission proposed for M7 for the study of solar flares
- SPARK has not been selected but the consortium goes on to search for new flight opportunities with ESA or NASA
- The LISSAN high energy detector is based upon our work on GAGG + SiPM detectors. It is similar to FGS, with GAGG crystals of 2.5×2.5×10 cm size

see: Ryan, D.F.; et al. **The Large Imaging Spectrometer for Solar Accelerated Nuclei (LISSAN): A Next-Generation Solar γ-ray Spectroscopic Imaging Instrument Concept**. *Aerospace* **2023**, *10*, 985. https://doi.org/10.3390/ aerospace10120985

Our FGS spectrometer may also be used for **a future Compton telescope**:

- We can imagine putting spectrometers on 5 sides out of 6 of a cube and look for Compton events between two faces
- These will enable us to make Compton images of the MeV sky in a near 2π field of view

Figure: FGS detector adapted for LISSAN and proposed for SPARK

The Fast Gamma ray Spectrometer (FGS): a Multi-mission Instrument to Detect TGFs and Astrophysical Gamma ray Events

Thanks to the FGS team:

APC team: Philippe Laurent, Damien Pailot, Éric Bréelle, Sylvie Blin, Claude Chapron, Ronan Oger, Kévin Biernacki, Stéphane Dheilly, François Lebrun LESIA team: Nicole Vilmer, Denis Perret, Daniel Dias, Moustapha Dekkali, Pierre-Luc Astier CNES project director: Jérôme Carron

Back up 1

Raies activées lors de l'irradiation proton sur un cristal de GaGG :

Back up 2

Luminescence en fonction de l'énergie et du flux de proton :

Back up 3

Allure des spectres avant/pendant/après irradiation :

