Radio and X-ray diagnostics of flare accelerated electrons during the commissioning phase of Solar Orbiter

David Paipa

Advisors: Dr. Milan Maksimovic Dr. Nicole Vilmer

PNST 2024 - Marseille January 10, 2024

Solar flaresContextSolar OrbiterObservationsFutureEnergetic particles in solar flares: Particle acceleration and transport

Release of the free magnetic energy contained in **complex** magnetic fields can occur through the process of **magnetic reconnection**

End

Solar flares Context Solar Orbiter Context on Radio/X-ray observations

The timing of main HXR peak and Radio emissions can be very similar ...

... BUT this is not always the case

Solar flaresContextSolar OrbiterObservationsContext on Radio/X-ray observations:IPT3 delayed emission

The timing of main HXR peak and Radio emissions can be very similar ...

Future

End

Solar flares Context Solar Orbiter Observations Context on Radio/X-ray observations: Previous studies

Future

End

Previous statistical studies characterizing the correlation between HXR and radio emission intensities

– James, vilmer 2023

Correlation between non-thermal electron number with E > 20 keV at HXR peak vs. peak NRH flux at different frequencies

> ~200 events analyzed in 13 year interval

Combining observations from different observatories **limits the number of events**

Solar Orbiter observes in X-ray and Radio f**rom the same platform**

Solar flares

Solar Orbiter

Observations

The Solar Orbiter

Launched in February 2020 Getting as close as ~0.28 AU **10 instruments** onboard

- 4 in-situ
- 6 remote sensing

Spectrometer/telescope for imaging X-rays

- Energy range: 4 to 150 keV
- X-ray remote sensing
 - bi-grid imaging (Indirect)
 - spectroscopy

Radio and Plasma Waves Instrument

- 3 antennas , Radio waves measurements
- Frequency range: ~DC to 16.4MHz

How do solar eruption produce energetic particle radiation that fills the heliosphere?

Observations

End

First available interval for STIX/RPW combined observations between 17 and 21 November 2020

- Not all X-ray flares have an IPT3 associated, including some of the strongest flares
- Observation of intense IPT3s related to small flares

What conditions determine the presence of IPT3s in solar flares?

Solar flaresContextSolar OrbiterObservationsCase study:Observation of the November 2020 period

Events from first available interval for STIX/RPW combined observations between 17 and 21 November 2020

Future

End

RPW/STIX data availability to study **15 flares with IPT3s associated UV images (EUI/FSI 174A) also available for some of them** Solar Orbiter

Observations

Future

End

All of the 15 X-ray flares with IPT3s are located in the same active region

EUI/FSI 174A 18 Nov - 21:57

The Active region is transiting through the limb from Solar Orbiter's perspective

Observations

Future

18 Nov 2020 - IT3 time 13:09

18 Nov 2020 - IT3 time 22:32

End

Change in morphology of X-ray sources observed before/during IT3 onset time for all 15 flares

4 cases:

End

Solar Orbiter

Observations

11 cases:

Future

Solar flares Context Solar Orbiter **Results: Open magnetic field lines** 8 cases:

X-ray sources change morphology close to the same "open-like" plasma structures before/during the IPT3 onset time

Observations

Future

End

12

Solar flaresContextSolar OrbiterResults: Open magnetic field lines

Running difference images in UV (1h difference) show emission enhancement in OMFL

Observations

Elongation of X-ray sources towards OMFL

Future

End

Adapted from Krucker, Kontar et al. 2011

Flares observed on the limb

Observed from "the side" given the vantage point of Solar orbiter

Solar flares

Context

Solar Orbiter

Observations

Future

End

Main ideas to take home

Analysis of 15 flares with IPT3 associated during the first period with availability for STIX/RPW combined observations

All of them were located **close to the same active region**, transiting through and behind the limb in the observation period

Change in the x-ray source morphology close to the IPT3 onset time observed in all cases, either change in shape or new X-ray sources appear

UV images show that the HXR emission sites change morphology towards persistent open magnetic field lines.

Thanks :)

Questions? comments? david.paipa@obspm.fr

ANNEX

Solar flares Solar Orbiter Context Method **Energetic particles in solar flares: Introduction**

Observations

Future

low frequencies

10

Radio emissions drifting from high to

End

Wind/Waves Rad2

One of the main science objectives of Solar Orbiter How do solar eruption produce energetic

particle radiation that fills the heliosphere?

Table 1. Summary of the X-ray flares and Interplanetary Type III bursts (IT3) observed by STIX and RPW, respectively, between 17 and 21 November 2021.

Day	Flares	IT3 ^b	IT3 (peak) ^c	sample IT3 ^d	\mathbf{R}^{e}
17	81	6	6	3	1.00
18	59	13	9	7	0.69
19	33	4	3	2	0.75
20	21	4	1	1	0.25
21	38	5	1	1	0.20
Sum Notes.	232	32	21	15	0.66

^a Number of X-ray flares per day according to the STIX Data Center ^b IT3s detected by RPW

^c IT3s that can be associated with an HXR peak

d IT3s included in the study sample

" Ratio of association of detected IT3s with HXR peaks

Observations

Future

End

The delay of the IPT3 onset time with respect to the associated HXR peak is around 3 minutes (or less) for all flares

For only 6 cases the IPT3 is associated with the main HXR peak of the flare

For most of the cases the delay between the IPT3 onset time and the X-ray onset time is above 10 minutes

Solar flaresContextSolar OrbiterMethodObservationsFutureEndMethod for X-ray and Radio Diagnostics: Nice example of delay in Type III bursts

Flare on July 17, 2021 UT 05:05

Presence of (IP) Type III bursts

Flare counts in energies up to 84 KeV-

several impulsive HXR emission peaks, some of them temporally associated with IPT3s

Solar flaresContextSolar OrbiterMethodObservationsFutureEndMethod for X-ray and Radio Diagnostics: Nice example of delay in Type III bursts

Flare on July 17, 2021 UT 05:05

Presence of (IP) Type III bursts

Flare counts in energies up to 84 KeV-

several impulsive HXR emission peaks, some of them temporally associated with IPT3s

Solar flaresContextSolar OrbiterX-ray Diagnostics: Timing and Imaging

Imaging of 4 time intervals close to the IPT3 onset time (Before and during)

HXR footpoints

Adapted from

Krucker, Kontar et al. 2011

Solar flares Solar Orbiter Method Context **Radio Diagnostics: Frequency Drift Rate**

Observations

 10^{-2}

10

10⁵

 10^{4}

 10^{3}

0.98 MHz 0.62 MHz

End

Future

start time: 17-Jul-2021 04:34:20 2.68 MHz 1.23 MHz 0.5 2.42 MHz 0.98 MHz Onset frequency 2.08 MH; 0.68 MHz Frequency [MHz] ^{1.0} Fo = 4.88 MHz 52 MHz 1.82 MHz 0.62 MHz 3.22 MHz 1 48 MHz 0.42 MHz 2.0 4.0 12.0 04:40 04:50 05:00 05:10 05:20 05:30

Fitting the time profiles for each frequency channel with a parametric model can provide the peak and onset of emission per frequency 0.015 0.020 0.025 0.030 0.035

v/c ~ 0.1∓0.04

1 23 MH

 $r[R_o]$

ne model

(Leblanc)

Electron density **ne [cm-3]** decreases with heliocentric distance **r** [Ro] (Leblanc,1998)

 $n_e(r) = 8.0 \times 10^7 r^{-6} + 4.1 \times 10^6 r^{-4} + 3.3 \times 10^5 r^{-2}$

Plasma emission frequency **fp** [kHz] depends on electron density **ne [cm-3]**

$$f_p pprox 9 imes \sqrt{n_e}$$

EM waves can be emitted at the fundamental (\mathbf{f}_p) and harmonic component (~2 \mathbf{f}_p)

Solar flaresContextSolar OrbiterObservationsA work in progress: Paper on November 2020 events

- Continue the observation of X-ray flares in the November 2020 period
 - same active region? what is different?
- Integrate the frequency drift analysis and spectroscopy to the study of these flares
 - what can we say about the energy content of the accelerated electrons? any relation with appearance of IPT3?
- Use data of other instruments when possible
 - EUI FSI 174/304 A
 - in-situ particle detections with EPD
 - Ground-based Radio
- Robust statistical analysis with a larger population of events

End

Future