Electron radiation belts of Jupiter Anisotropy of >1 MeV electrons

Quentin Nénon, IRAP-CNRS, Toulouse, France

Jupiter: analogue for extra-solar radiation belts

Brown dwarf radiation belts [Kao+2023, Nature]

Why study the Jovian radiation belts?

1) Space plasma physics in a unique natural laboratory

To answer to the universal question: where do energetic charged particles come from, how are they accelerated, transported, and lost?

Unique configuration: strong magnetic field, fast planetary rotation, volcanic moon, rings...

Unique regime: high fluxes at high kinetic energies

Electron Pitch Angle Distribution provide insight into the dominant physical processes

Why study the Jovian radiation belts?

- 2) Planetary science: weathering of the moon surfaces
- > Electron Pitch Angle Distribution defines the dose received at each location on a moon surface

Why study the Jovian radiation belts?

By studying the Jovian radiation belts:

- 1) Space plasma physics
- 2) Planetary science: moon weathering
- 3) Hazard for artificial satellites (electronics, solar panels)
- The Radiation Monitor of JUICE (RADEM) will observe 0.5% of the sky.
 Anisotropy of the radiation?

In-situ exploration of the Jovian radiation belts

Energetic charged particle detectors onboard:

Past

- 1970s: NASA Pioneer 10-11, Voyager 1-2
- 1992: ESA Ulysses
- 1995-2003: NASA Galileo (equatorial orbiter)

Present

• 2016 – now: NASA Juno (polar orbiter)

Future

• 2030s: ESA JUICE, NASA Europa-Clipper (equatorial)

In-situ exploration of the Jovian radiation belts

Energetic charged particle detectors onboard:

Past

- 1970s: NASA Pioneer 10-11, Voyager 1-2
- 1992: ESA Ulysses
- 1995-2003: NASA Galileo (equatorial orbiter)

Present

• 2016 – now: NASA Juno (polar orbiter)

Future

- 2030s: ESA JUICE, NASA Europa-Clipper (equatorial)
- Amongst orbiters, only Galileo for the anisotropy of >1 MeV electrons

Galileo – EPD (1995-2003)

Results: Field-aligned distributions of >1 MeV electrons

- Galileo-EPD reveals that auroral acceleration injects
 1 MeV electrons in the Jovian magnetosphere
- Do these electrons remain trapped?

The anisotropy of >1 MeV electrons at Jupiter

Results: Electron PADs observed at R=18 Rj in 1996-310

Results: Electron PADs observed at R=18 Rj in 1996-310

- For >1 MeV and >10 MeV electrons, we may have the superposition of:
 - A pancake (in blue)
 - A field-aligned distribution (in red)

During its 8-year tour, Galileo collected 26 hours of >1 MeV electron anisotropy data.

- 1) Space plasma physics:
- The Jovian aurorae may be a significant source of trapped MeV electrons in the middle magnetosphere

During its 8-year tour, Galileo collected 26 hours of >1 MeV electron anisotropy data.

1) Space plasma physics:

• The Jovian aurorae may be a significant source of trapped MeV electrons in the middle magnetosphere

2) Moon surface weathering:

The Pitch Angle Distribution of >1 MeV electrons is now constrained. How does it change our understanding of moon surface weathering?

-> Collaborations with UC Berkeley and Georgia Tech

During its 8-year tour, Galileo collected 26 hours of >1 MeV electron anisotropy data.

1) Space plasma physics:

• The Jovian aurorae may be a significant source of trapped MeV electrons in the middle magnetosphere

2) Moon surface weathering:

The Pitch Angle Distribution of >1 MeV electrons is now constrained. How does it change our understanding of moon surface weathering?

-> Collaborations with UC Berkeley and Georgia Tech

3) Hazard for artificial satellites:

JUICE-RADEM will indeed inform on the omnidirectional flux.

During its 8-year tour, Galileo collected 26 hours of >1 MeV electron anisotropy data.

1) Space plasma physics:

• The Jovian aurorae may be a significant source of trapped MeV electrons in the middle magnetosphere

2) Moon surface weathering:

The Pitch Angle Distribution of >1 MeV electrons is now constrained. How does it change our understanding of moon surface weathering?

-> Collaborations with UC Berkeley and Georgia Tech

3) Hazard for artificial satellites:

JUICE-RADEM will indeed inform on the omnidirectional flux.

However, the Jovian radiation belts will remain largely unexplored and poorly understood...

> The COMPASS mission proposal

COMPASS: exploring the extremes of **Jupiter's radiation belts**

(Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks)

A Heliophysics **Mission Concept Study** for the American Heliophysics decadal survey <u>PI:</u> George Clark, JHU/APL Presented by <u>Quentin Nénon</u>, IRAP, on behalf of the COMPASS team

COMPASS: exploring the extremes of **Jupiter's radiation belts**

(Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks)

A Heliophysics **Mission Concept Study** for the American Heliophysics decadal survey <u>**PI:**</u> George Clark, JHU/APL Presented by <u>Quentin Nénon</u>, IRAP, on behalf of the COMPASS team

COMPASS: exploring the extremes of **Jupiter's radiation belts**

(Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks)

A Heliophysics **Mission Concept Study** for the American Heliophysics decadal survey <u>**PI:**</u> George Clark, JHU/APL Presented by <u>Quentin Nénon</u>, IRAP, on behalf of the COMPASS team

Science Payload

Instruments		Mass [*] (MEV)	Power	
TPD:	Thermal Plasma Detector	7.7 kg x2	6 W ×2	
SPD:	Suprathermal Particle Detector	19.0 kg	11.0 W	
EPD:	Energetic Particle Detector	10.3 kg	3.6 W	
RPD:	Relativistic Particle Detector	17.8 kg	7.1 W	
UPD:	Ultra-relativistic Particle Detector	13.3 kg	16.5 W	
FGM:	Fluxgate Magnetometer	1.8 kg x2	4.8 W x2	
SCM:	Search Coil Magnetometer	7.9 kg	1.2 W	
EFW:	Electric Field Waves	14.6 kg	17.7 W	
XRI:	X-Ray Imager	16.5 kg	6.9 W	
EPOC:	Education & Public Outreach Camera	6.5 kg	2.7 W	
* includes shielding mass				

Planetary space weather:

- How can we constrain the interplanetary conditions upstream of the Jovian magnetosphere? (solar wind propagation? ENA observations?)
- What is the influence of interplanetary conditions on the Jovian radiation belts?

Mission Timeline*

* representative timeline: mission design is extremely flexible with multiple launch windows

0

Ð

C

uo

C

The COMPASS team

European partners

Concept Study Team

Name	Role	Affiliation
George Clark	Principal Investigator	Johns Hopkins Applied Physics Laboratory (APL)
Jim Kinnison	Study Design Lead	APL
Dan Kelly	Study Design Lead	APL
Peter Kollmann	Topic Lead: Acceleration	APL
Wen Li		Boston University
Allison Jaynes	Topic Lead: Origins	University of Iowa
Lauren Blum	Topic Lead: Loss	University of Colorado Boulder
Robert Marshall		University of Colorado Boulder
Drew Turner	Project Science	APL
lan Cohen		APL
Sasha Ukhorskiy	Online Martaniti	APL
Barry Mauk	Science Mentorship	ΔΡΙ
Elias Roussos	Jupiter & Earth Radiation Belt	Max Planck Institute for Solar System Research
Quentin Nénon		Research Institute in Astrophysics and Planetology
Sasina Drozdov		University of California Los Angeles
Xinlin I i	Expertise	University of Colorado Boulder
Emma Woodfield		British Antarctic Survey
Will Dunn		University of College London
Grani Beriand	X-ray Science & Astrophysics Expertise	University of Colorado Bouider
Ralph Kraft		Harvard University
Peter Williams		Harvard University
Todd Smith	Theory & Modeling Expertise	APL
Kareem Sorathia		ΔΡΙ
Anthony Sciola		APL
George Hospodarsky		University of Iowa
Xin Wu	Particle & Field Instrumentation	University of Geneva
Paul O'Brian	Leads	The Aerospace Corporation
Mark Loopar		The Agreenees Corporation
Angelica Sicard	Salammbô Simulation Support	The French Aerospace Lab (ONERA)
Andy Santo	Project Management	APL
Meagan Leary	Design Study Team	APL
Amanda Haapala	Design Study Team	APL
Fazle Siddique	Design Study Team	APL
Michelle Donegan	Design Study Team	API
Ben Clare	Design Study Team	ΔΡΙ
Derek Emmell	Design Study Team	ΔΡΙ
Kim Slack	Design Study Team	
John Wirzhurger	Design Study Team	
Denial Canulyada	Design Study Team	