Cascade-Dissipation Balance in Space Plasma Turbulence Insights from the Terrestrial Magnetosheath

PNST 8-12 Jan 2024 - Marseille

Davide Manzini^{1,2}, F. Sahraoui¹, F. Califano².

¹Laboratoire de Physique des Plasmas, École Polytechnique, France ²Dipartimento di Fisica E.Fermi, Universitá di Pisa, Italia

Cascade and Dissipation in Plasmas

Cascade and Dissipation in Plasmas

Q₁: How is the energy cascade modified by plasma phenomena (e.g. MR)?

Cascade and Dissipation in Plasmas

Q₁: How is the energy cascade modified by plasma phenomena (e.g. MR)?

Q₂: What happens at the cascade in the kinetic range?

And ultimately: what sets Q_i/Q_e ?

The Cascade Rate

$$\Pi(K) = -\frac{\partial}{\partial t} \int_{|\mathbf{k}'| < K} E(\mathbf{k}') d\mathbf{k}' \bigg|_{\rm NL}$$

Rate of change, due to non-linearities, of large scale energy.

In the *inertial range* we compute the cascade rate using third order structure functions:

$$\Pi \sim -\frac{4}{3\ell} \left\langle (|\delta \mathbf{v}|^2 + |\delta \mathbf{b}|^2) \delta v_\ell - 2(\delta \mathbf{v} \cdot \delta \mathbf{b}) \delta b_\ell \right\rangle$$

The Cascade Rate

$$\Pi(K) = -\frac{\partial}{\partial t} \int_{|\mathbf{k}'| < K} E(\mathbf{k}') d\mathbf{k}' \bigg|_{\rm NL}$$

Rate of change, due to non-linearities, of large scale energy.

In the *inertial range* we compute the cascade rate using third order structure functions:

$$\Pi \sim -\frac{4}{3\ell} \left\langle (|\delta \mathbf{v}|^2 + |\delta \mathbf{b}|^2) \delta v_\ell - 2(\delta \mathbf{v} \cdot \delta \mathbf{b}) \delta b_\ell \right\rangle$$

Statistical convergence is an issue! In the SW we need one year of data for a reliable estimate [Stawarz+ 2009 ApJ]

The Cascade Rate

$$\Pi(K) = -\frac{\partial}{\partial t} \int_{|\mathbf{k}'| < K} E(\mathbf{k}') d\mathbf{k}' \bigg|_{\rm NL}$$

Rate of change, due to non-linearities, of large scale energy.

In the *inertial range* we compute the cascade rate using third order structure functions:

$$\Pi \sim -\frac{4}{3\ell} \left\langle (|\delta \mathbf{v}|^2 + |\delta \mathbf{b}|^2) \delta v_\ell - 2(\delta \mathbf{v} \cdot \delta \mathbf{b}) \delta b_\ell \right\rangle$$

Statistical convergence is an issue! In the SW we need one year of data for a reliable estimate [Stawarz+ 2009 ApJ]

Can we overcome this limitation?

An alternative formulation: the Coarse-Graining approach

The coarse-graining operation is a local average of the field

An alternative formulation: the Coarse-Graining approach

The coarse-graining operation is a local average of the field

$$\bar{\mathbf{u}}_{\ell} = \mathbf{u} * G_{\ell} = \int \mathbf{u}(\mathbf{x} + \mathbf{x}') G_{\ell}(\mathbf{x}') d\mathbf{x}'$$

50

We only retain "large scale" components $|\mathbf{k}| \lesssim 1/\ell$ $PSD\{\bar{\mathbf{u}}_{\ell}\} = |\hat{\mathbf{u}}(\mathbf{k})|^2 |\hat{G}_{\ell}(\mathbf{k})|^2$

An alternative formulation: the Coarse-Graining approach

The method pioneered by G. L. Eyink¹ and H. Aluie² enables us to write equations for large scale energies.

E.g. in the framework of Incompressible Hall MHD^{3,4} and for each scale ℓ

¹Eyink, Physica D (2005) ²Eyink & Aluie PoF (2009) ³Camporeale PRL (2018) ⁴Manzini PRE (2022)

The "local cascade rate"

Change of large scale energy density due to non-linear interactions $-\frac{\partial}{\partial t} \left(\rho_0 \frac{|\bar{\mathbf{u}}_{\ell}|^2 + |\bar{\mathbf{b}}_{\ell}|^2}{2} \right) \Big|_{\mathrm{NL}} = \pi_{\ell}(x) = -\rho_0 \nabla \bar{\mathbf{u}}_{\ell} : \boldsymbol{\tau}_{\ell} - \bar{\mathbf{j}}_{\ell} \cdot \boldsymbol{\mathcal{E}}_{\ell}$

 $\pi_{\ell}(x)$ is the cross-scale transfer across scale ℓ "at position x"

The "local cascade rate" and Magnetic Reconnection

Can we use CG to diagnose *localized cross-scale energy transfer* associated with MR?

Magnetic Reconnection

MR drives locally a cross-scale energy transfer to smaller scales The transfer is effective at subion scale [Manzini+ PRL 2023]

This is reflected in the Magnetic field Spectrum [Franci+ ApjL 2017]

Magnetic Reconnection

MR drives locally a cross-scale energy transfer to smaller scales The transfer is effective at subion scale [Manzini+ PRL 2023]

This is reflected in the Magnetic field Spectrum [Franci+ ApjL 2017]

 $k_{\perp} d_{i} = 1$ (h) 10^{-1} $k^{-5/3}$ 10^{-3} After MR $k^{-3.0}$ 10^{-5} tΩi Before MR 10^{-7} 250 272 290 10^{-9} 10^{-1} 10⁰ 10¹ kd_i

 $\mathcal{E}^f_{\alpha} = \rho_{\alpha} |\mathbf{u}_{\alpha}|^2 / 2 \quad \mathcal{E}^{em} = (|\mathbf{E}|^2 + |\mathbf{B}|^2) / 8\pi \quad \mathcal{E}^{th}_{\alpha} = \mathrm{Tr}(\mathbf{P}_{\alpha}) / 2$

Cascade of Kinetic + EM Energy

Cascade of Kinetic + EM Energy

Cascade of Kinetic + EM Energy in MMS data [Manzini submitted (2023)]

$$PS_p(\ell) + PS_e(\ell) - \Pi(\ell)$$
 = cst.

Some statistics ~100 MMS intervals

Turbulence *heats the plasma* via the PS interaction!

At which scales are lons and Electrons heated?

Filtered Pressure-Strain interaction

Rate of change of Large Scale (>*l*) Thermal Energy

How much "heating" between scale ℓ and $\ell + \Delta \ell$?

 $q(\ell) = -PS(\ell) + PS(\ell + \Delta \ell)$

At which scales are lons and Electrons heated?

At which scales are lons and Electrons heated?

Conclusions Manzini+ PRL 2023, Manzini+ rev. 2024

- The (full) pressure strain plays the role of an *effective dissipation* [Yang+ 2017, Hellinger+ 2022]
- The Kinetic range is (weakly) dissipative and the plasma is heated
- Electron Heating is effective in the full kinetic range

