Detection and interpretation of fine structures in radio bursts from the Red Dwarf AD Leonis

C. K. Louis, P. Zarka J. Zhang, H. Tian H. Lu, D. Gao, X. Sun, S. Yu, B. Chen, X. Cheng

Introduction - The FAST radio-telescope

Five-hundred meter Aperture Spherical radio Telescope

Guizhou province (China)

[1000—1500] MHz Full polarization

 $\delta t = 196.608 \ \mu s$ $\delta f = 0.49 \ MHz$

Observations of AD Leonis

"Slow" drifting features (~ minutes)

"Fast" drifting features (~ milliseconds)

Zhang et al., 2023, APJ

Observations of AD Leonis

Not the first observations of AD Leo, but never with such resolution

Emissions are:

- Bursty
- Right-Handed (RH) Circularly polarized ~100%
- —> Cyclotron Maser Instability Mechanism - same as Earth, Jupiter and Saturn auroral radio emissions
 - $f_{emission} \sim fce \propto B$
 - drift \propto electron energy

Zhang et al., 2023, APJ

Comparison AD Leonis / Jupiter

Comparison AD Leonis / Jupiter

M3.5 V star Mass: 0.45 Msun Morin et al. (2008) Radius: 0.44 Rsun Mann et al. (2015) Distance: 4.965 pc Gaia Collaboration 2020) Period: 2.23 ±0.001 days Fouqué et al. (2023)

Zeeman Doppler Imaging measurements: Dipolarity: 70% B_{Max}: 460 G Bellotti et al. (2023) Obliquity: 59°

AD Leonis

ExPRES simulations

1st observation

- AD Leonis Magnetic field model

- Mechanism:

Cyclotron Maser Instability

 Electron distribution function: - Loss cone / shell type

- Electron energy E_e-: - 5, 10, 20, 100, 200, 500 keV

- Position:

- L shell 2, 5, 10, 20, 40
- δlongitude: 1°
- co-rotating w/ AD Leo

Wave propagation mode: - Left-Ordinary (LO) - Right-eXtraordinary (RX

2nd observation

E 1.0	_ ح
<u>-</u> 0.5	tion
<u> </u>	ri z a
-0.5	
E -1.0	Δ

- AD Leonis Magnetic field model

- Mechanism:

- Cyclotron Maser Instability

 Electron distribution function: - Loss cone / shell type

- Electron energy E_e-: - 5, 10, 20, 100, 200, 500 keV

- Position:

- L shell 2, 5, 10, 20, 40
- δlongitude: 1°
- co-rotating w/ AD Leo

Wave propagation mode: - Left-Ordinary (LO) - Right-eXtraordinary (RX

ExPRES simulations

2021/12/02-03 (RH emission)							
		LO North	LO South	RX North	RX South		
LC 5 keV			L=2				
LC 10 keV			L=2				
LC 20 keV			L=2				
LC 100 keV							
LC 200 keV							
LC 500 keV							
Shell 90°		L=2	L=2	L=2	L=2		

Shell not excluded but no information on E_{e-}

Bursts and theory

Bursts and theory

Bursts and theory

Programming Observations with NenuFAR

What does it mean for observations with NenuFAR frequency range?

Conclusions & Perspectives

- Coherent results between the two approaches, on: - "slow" drifting features (ExPRES simulations)
- "fast" drifting features (Bursts) -> - CMI
 - E_e= [10-20] keV
 - Position: small L-shell (2-5 RADLeo)
- ExPRES simulations could give constrains on:
 - Electron distribution function type (Loss cone vs. Shell)
 - Wave propagation mode
- —> More observations needed
- -> Should be observable with NenuFAR - 418 hours of observations (over 4 years)

- Pipeline to analyse "slow" and "fast" drifting features in development

2nd type of radio emissions

Back up AD Leonis vs. Sun