Global magnetic flux content of the magnetosphere during magnetic storms

Laboratoire de Physique des Plasmas

D. Fontaine, M. Akhavan-Tafti, S. Alqeeq, E. Cazzola, O. Le Contel Laboratoire de Physique des Plasmas (LPP)

Impact of Solar Events

Solar wind & events : Continuous monitoring at L1:

(satellites ACE, WIND, ...)

Magnetosphere : observations from orbiting spacecraft

(multi-spacecraft missions: Cluster THEMIS, MMS, ...)

\rightarrow But no continuous coverage of crucial regions:

- boundaries: bow-shock, magnetopause
- magnetosheath plasma,
- magnetospheric plasma reservoirs: plasmasheet, ring current, ...
- connections with the ionosphere: field-aligned currents, ...

Impact on magnetosphere / ionosphere inferred from the only available monitoring :

- → Magnetic field variations from ground-based magnetic stations
 → Magnetic indices used as proxies for iono-/magnetospheric currents : SYM-H⁶ / Dst⁴ : Disturbance Storm Time (equatorial currents) < -50 nT: moderate storm

 - < -100 nT: intense storm

Other indices: PC²(polar cap), AE¹² (auroral electrojet), Kp¹³(middle latitudes)

→ Several magnetospheric missions-15

- → Simultaneous observations Cluster, THEMIS, MMS 2015 - 2024
 - * CLUSTER 4 (polar plane)
 - \times THEMIS A
 - ♦ MMS4
 - Δ **RBSP A**

Case of intense magnetic storms : minimum SYM-H < 100 nT

Triggered by Coronal Mass Ejections (ACE observations)

- Large and rotating magnetic fields (magnetic clouds)
- Large velocities: 400 \rightarrow 600 km/s
- Enhanced pressure (magnetic sheaths)
- Low MA and low $\boldsymbol{\beta}$

Impacts on the **dayside magnetosphere**

MMS, GOES, RBSP, Cluster

Subsolar magnetopause compressed from Ro ~11 Re to Ro ~ 6 - 7 Re during SSC & main phase at 10.8 Re/h for 10 min

Magnetosphere volume reduced by 40 %

Variations of the magnetic flux content of dayside magnetosphere

 $_{dyn} = 20 \text{ nPa}$

0

0

 $P_{dyn} = 20 \text{ nPa}$ $B_z = 0.0 \text{ nT}$

XGSM

 $B_{2} = 0.0 \text{ nT}$

-15 а

YgsM

15 L

YGSM

15

а

 $\begin{array}{l} \mathsf{P}_{\mathsf{dyn}} = 2 \ \mathsf{nPa} \\ \mathsf{B}_{\mathsf{z}} = 0.0 \ \mathsf{nT} \end{array}$

- B = Bz in the equatorial plane dS: equatorial surface of magnetic shells (~ circular rings on dayside)
- SSC: strong compression of the magnetosphere without magnetic flux loss
- Storm Peak (min SYM–H): magnetosphere still compressed but loss of magnetic flux

Suggestions:

On-going reconnexion processes?

Unbalanced flux replenishment due to the time lag of convection cycle?

(Akhavan-Tafti et al., 2020, 2023)

Peaks in auroral indices :

- → Geomagnetic activity, substorms in plasmasheet, main magnetospheric plasma reservoir
- \rightarrow THEMIS Observations

Nightside plasmasheet from THEMIS data

- Many and large B fluctuations
- Occasional exits outside of the plasmasheet
 - \rightarrow disturbed situation,
 - \rightarrow instabilities, plasmasheet thinning
 - \rightarrow triggering of substorms

Estimation of :

- Total plasmasheet pressure

(enhanced by a factor of 5 during main phase)

- Lobe magnetic pressure exerted on plasmasheet
- Lobe magnetic field,
- Plasmasheet thickness, ...
 - \rightarrow See poster by S. Algeeq et al.

Evolution of the magnetic flux content in magnetic shells during the crossing of solar events

Nightside, magnetic shells cannot be approximated by circular rings

Complementary inputs from magnetic field models ?

_ THEMIS A magnetic field

_ Tsyganenko model (T96) [Psw, Dst, IMF (By,Bz)]

Good agreement data / model !

Magnetic field model (T96) averaged over 3h (around THEMIS apogee)

First estimates of the magnetic flux content during magnetic storm (TBC)

Closed magnetic shells:

- Large magnetic flux content (inner field)
- No variation at SSC
- Small flux loss afterwards

Lobes (open field lines):

- Small flux content at quiet time
- Large increase at SSC and Main
- Flux loss afterwards

Magnetospheric dynamics during magnetic storms

Contribution of *in-situ* measurements in addition of magnetic indices deduced from ground-based stations and commonly used for Space Weather studies.

Several missions (Cluster, THEMIS, MMS,...) in the magnetosphere (2015 – 2024)

 \rightarrow Good opportunity to have one mission in a crucial region during events

 \rightarrow Focus on the case of intense magnetic storms, triggered by ICMEs

→ Characterization of the boundary motions and plasmasheet dynamics
 Plasmasheet compression and estimation of the lobe magnetic field
 Estimation of the plasmasheet thickness,
 → see poster by S. Algeeg et al.

 \rightarrow Estimation of the variation of the magnetic flux content during the storms (study in progress)

- In closed magnetic shells: compression of magnetic shells loss of magnetic flux content from main phase

- In the lobes: large enhancement of magnetic flux content from the storm beginning regular decrease afterwards

 \rightarrow Extend to more cases (to be done)