A SELF-CONSISTENT MODEL OF RADIAL TRANSPORT IN THE MAGNETODISKS OF GAS GIANTS

INCLUDING INTERHEMISPHERIC ASYMMETRIES

<u>Marie Devinat</u> Michel Blanc, Nicolas André

1RST YEAR PHD IRAP, CNRS, UPS, FRANCE

PNST, JANUARY 9, 2024

WHY?

FAST ROTATING MAGNETOSPHERE WITH INNER SOURCES

JUNO OBSERVATIONS OF JOVIAN ASYMMETRIES

GOALS

GOALS

THEORETICAL MODELLING

Two types of models :

J transport models

e.g. Cowley & Bunce 2001

M, E transport models

e.g. Ferriere 2001

Two types of models :

J transport models

e.g. Cowley & Bunce 2001

- field-aligned currents
- (partial) M-I coupling
- B field line bending
- transport processes
- corotational breakdown
- ionospheric properties
- response to solar wind

M, E transport models

e.g. Ferriere 2001

Two types of models :

J transport models

e.g. Cowley & Bunce 2001

- field-aligned currents
- (partial) M-I coupling
- B field line bending
- transport processes ↓
- corotational breakdown
- ionospheric properties
- response to solar wind

M, E transport models

e.g. Ferriere 2001

- interchange instability
- integrated quantites
- M-I coupling
- field-aligned dynamics ↓
- quantify M and E sources
- transport timescales
- transport modes (interchange)

Two types of models :

J transport models

e.g. Cowley & Bunce 2001

- field-aligned currents
- (partial) M-I coupling
- B field line bending
- transport processes

M, E transport models

e.g. Ferriere 2001

A and E sources

- interchange instability
- integrated quantites
- M-I coupling
- field-aligned dynamics

corotational combine both approaches

- ionospheric properties
- response to solar wind

transport timescales

 transport modes (interchange)

OUR GENERAL MODELLING PRINCIPLES

Main hypotheses :

- axisymmetry
- multi-fluid plasma
- MHD approximation
- no time variability

Included in the model :

- M-I coupling
- high latitude (static) potential drops
- disk latitudinal extension

GLOBAL EQUATIONS

thick equatorial disk

high-latitudes contribution

Mass
$$\frac{\partial M_{0}}{\partial t} - B_{0,eq} \frac{\partial}{\partial \alpha} \left(D_{\alpha} B_{0,eq} \frac{\partial M_{0}}{\partial \alpha} \right) = \overline{S}_{m,pu} - \overline{L}_{m}$$
Energy $\frac{\partial W_{0}}{\partial t} - B_{0,eq} \frac{\partial}{\partial \alpha} \left(D_{\alpha} B_{0,eq} \frac{\partial W_{0}}{\partial \alpha} \right) = \overline{S}_{q} - \overline{L}_{q}$ Angular
momentum $\dot{M}_{\perp} \frac{\partial^{2} \Phi_{eq}}{\partial \alpha^{2}} + 2\dot{M}_{R/\alpha} \frac{\partial \Phi_{eq}}{\partial \alpha} = 2\pi \left(\Omega_{K} R_{P} - \frac{\partial \Phi_{eq}}{\partial \alpha} \right) B_{0,eq} \Sigma_{pu} R_{eq}^{2}$ $I = -B_{ik} \frac{\partial}{\partial \alpha} \left(\left(\Omega_{n} R_{P} - \frac{\partial \Phi_{ik}}{\partial \alpha} \right) \frac{\Sigma_{Pk} R_{ik}^{2} B_{ik}}{\sin(l_{k})^{2}} \right), k = n \text{ or } s$ Field-aligned
dynamics $J_{//ik} = -K(\Phi_{ik} - \Phi_{eq}), k = n \text{ or } s$

Devinat, Blanc, André (2023), "A self-consistent model of radial transport in the magnetodisks of gas giants including interhemispheric asymmetries", submitted JGR:Space Physics

NUMERICAL APPLICATIONS : FOCUS ON JUPITER

(SIMPLIFIED) JOVIAN CASE : ASSUMPTIONS

(SIMPLIFIED) JOVIAN CASE : EQUATIONS

$$\Omega^* = \frac{S_n \Omega_{nn} + S_s \Omega_{ns}}{S_n + S_s} \qquad S_k = \frac{\Sigma_{Pk} R_{ik}^2 B_{ik}}{\sin(I_k)}$$

$$\frac{MR_{eq}}{B_{o,eq}}\frac{\partial\Omega}{\partial R_{eq}} + 2\frac{M}{B_{o,eq}}\Omega = 2\pi(S_n + S_s)(\Omega^* - \Omega)$$

Hill 1979, Pontius 1997

Brooks et al. 2019

(Simplified) Jovian case : equation ightarrow numbers

$$\frac{R_{eq}}{B_{0,eq}}\frac{\partial\Omega}{\partial R_{eq}} + 2\frac{1}{B_{0,eq}}\Omega = 4\pi\frac{S}{\dot{M}}\left(\Omega^* - \Omega\right)$$

(SIMPLIFIED) JOVIAN CASE : EQUATION \rightarrow NUMBERS

(Simplified) Jovian case : equation ightarrow numbers

(Simplified) Jovian case : equation ightarrow numbers

(SIMPLIFIED) JOVIAN CASE : NUMERICAL RESULTS

Exploration of the parameter space

ON THE WHOLE...

SUMMARY

We combined two existing approaches into a **new formalism for the global transport** of mass, angular momentum and energy in the **gas giant magnetospheres**.

11

SUMMARY

We combined two existing approaches into a **new formalism for the global transport** of mass, angular momentum and energy in the **gas giant magnetospheres**.

- Application, Jovian case :
 - interhemispheric asymmetries
 - parameters space exploration

11

SUMMARY

We combined two existing approaches into a **new formalism for the global transport** of mass, angular momentum and energy in the **gas giant magnetospheres**.

- Application, Jovian case :
 - interhemispheric asymmetries
 - parameters space exploration
- Application, Kronian case (check paper!) :
 - influence of the disk thickness
 - radial evolution of parameters

Devinat, Blanc, André (2023), "A self-consistent model of radial transport in the magnetodisks of gas giants including interhemispheric asymmetries", submitted JGR:Space Physics

- Further theoretical developments :
 - more consistent interhemispheric asymmetries,
 - other asymmetries (longitude, local time, ...),
 - energy source (turbulence),
 - sources and losses,
 - temporal variability.

- Further theoretical developments :
- Possible applications:
 - exploration of Jupiter's innermost and outermost regions,

intermittent loading of plasma from Io and tail release,

- Further theoretical developments :
- Possible applications:
 - exploration of Jupiter's innermost and outermost regions,

intermittent loading of plasma from Io and tail release,

Louarn et al. 2014

Further theoretical developments :

- more consistent interhemispheric asymmetries,
- other asymmetries (longitude, local time, ...),
- energy source (turbulence),
- sources and losses,
- temporal variability.
- Possible applications:
 - exploration of Jupiter's innermost and outermost regions,
 - intermittent loading of plasma from Io and tail release,

PhD ... from Juno to JUICE...

THANK YOU FOR LISTENING!

Ionospheric properties from *Connerney et al. 2021* (magnetic field along the Io footprint), and *Al Saati et al. 2022* (Pedersen conductance).

	North				South			
	Σ_{pn}	B _{in}	λ_{in}	Sn	Σ _{ps}	Bis	λ_{is}	Ss
	[mho]	[G]	[°]	[R ² _J .B _J .mho]	[mho]	[G]	[°]	$[R_j^2.B_j.mho]$
Mean	2	12	70	0.7	3	10	-70	0.8
E1	0.8	5	80	0.03	1	8	-60	0.5
E2	11	20	55	18	12	12	-75	3

$$\begin{split} S &= \frac{S_n + S_s}{2} = 0.3(E1), 0.7(Mean), 10(E2) \\ R_j^2.B_j.mho &= 2.05 \times 10^{12} m^2.T.mho \end{split}$$

<u>Note</u>: from comparison with data, $\frac{S}{\dot{M}} \approx 4.8 \ 10^{-5} R_j^2.B_j.mho.s.kg^{-1}$ $\Rightarrow S \approx 0.05 - 0.07R_j^2.B_j.mho$ ($\dot{M} = 1 - 1.5t.s^{-1}$) (SIMPLIFIED) JOVIAN CASE : DENSITY CURVE

$$D_{\alpha}B_{0,eq}\frac{\partial M_{0}}{\partial \alpha} = \frac{\dot{M}}{2\pi R_{P}B_{0,eq}(\alpha_{0})}, \qquad D_{\alpha} = D_{\alpha 0} \left(\frac{R_{eq}}{R_{P}}\right)^{\beta}$$

$$D_{0,eq}(R_{eq}) = \rho_{0,eq}(R_{eq0}) - \frac{\dot{M}B_{0,eq}R_{P}^{\beta-2}}{2\pi(2-\beta)HB_{0,eq}(R_{eq0})D_{\alpha,0}} \left(R_{eq}^{2-\beta} - R_{eq0}^{2-\beta}\right)$$

 $\beta = 5.6$

(SIMPLIFIED) JOVIAN CASE : JOVIAN-LIKE SYSTEMS

Parameters ranges : $S = \frac{S_n + S_s}{2} = 0.3 \text{ to } 10 R_j^2.B_j.mho$ $\dot{M} = 0.6 \text{ to } 1.5 t.s^{-1}$

(SIMPLIFIED) KRONIAN CASE : NUMERICAL RESULTS

Vertically thick disk : influence on density and rotation curves

EARTH AND JUPITER MAGNETOSPHERES

JUNO AND JUICE

NASA/JPL-Caltech

ESA/SRE(2011)18 Yellow Book

Payload

- JADE (IRAP)
- ∎ JEDI
- FGM
- Waves
- UVS, JIRAM

Payload

JUICE

Equatorial orbit

- PEP (IRAP)
- RPWI (IRAP)
- J-MAG
- UVS, MAJIS

FIELD-ALIGNED PLASMA DISTRIBUTION

Aim: Measure the plasma distribution along field lines

Steps:

- Determine when Juno follows a B shell
- Examine the JADE i-e data
- Trace moments along trajectory
- Compare to models

