MONOFRACTALITY IN THE SOLAR WIND AT ELECTRON SCALES Insights from kinetic Alfvén waves turbulence

Space Science Center, University of New Hampshire, USA

Laboratoire de Physique des Plasmas, Université Paris-Saclay, France

Romain MEYRAND Department of physics, University of Otago, New Zealand

Vincent DAVID

Sébastien GALTIER

PNST - 09/01/2024

Assumptions:

- strong guide field \vec{b}_0
- weakly compressible plasma
- $\vec{b}(\vec{x},t) = (b_0 + b_z) \hat{e}_z + \hat{e}_z \times \vec{\nabla}_\perp \psi$

Assumptions:

- strong guide field b_0
- weakly compressible plasma
- $\vec{b}(\vec{x},t) = (b_0 + b_z) \hat{e}_z + \hat{e}_z \times \vec{\nabla}_\perp \psi$

$$\frac{\text{ERMHD}}{\partial t} \qquad \frac{\partial \psi}{\partial t} = d_i \left\{ \psi, b_z \right\} + d_i b_0 \frac{\partial \psi}{\partial z}$$

 $d_i \sim 100 \,\mathrm{km}$

 $\frac{\partial b_z}{\partial t} = -\frac{d_i}{\kappa} \left\{ \psi, \nabla_{\perp}^2 \psi \right\} + \frac{d_i b_0}{\kappa} \frac{\partial}{\partial z} \left(\nabla_{\perp}^2 \psi \right)$

Assumptions:

- strong guide field b_0
- weakly compressible plasma
- $\vec{b}(\vec{x},t) = (b_0 + b_z) \hat{e}_z + \hat{e}_z \times \vec{\nabla}_\perp \psi$

$$\begin{array}{l} \textbf{ERMHD} \\ \hline \partial \psi \\ \partial t \end{array} = d_i \left\{ \psi, b_z \right\} + d_i b_0 \left\{ \frac{\partial \psi}{\partial z} \right\} \end{array}$$

gradient along the guide field \dot{b}_0

 $d_i \sim 100 \,\mathrm{km}$

 $\frac{\partial b_z}{\partial t} = -\frac{d_i}{\kappa} \left\{ \psi, \nabla_{\perp}^2 \psi \right\} + \frac{d_i b_0}{\kappa} \frac{\partial}{\partial z} \left(\nabla_{\perp}^2 \psi \right)$

Assumptions:

- strong guide field b_0
- weakly compressible plasma
- $\vec{b}(\vec{x},t) = (b_0 + b_z) \hat{e}_z + \hat{e}_z \times \vec{\nabla}_\perp \psi$

- gradient along the guide field \dot{b}_0 — gradient along the local field $\vec{b}(\vec{x}, t)$ $d_i \sim 100 \,\mathrm{km}$

 $\frac{\partial \psi}{\partial t} = d_i \{\psi, b_z\} + d_i b_i \left(\frac{\partial \psi}{\partial z} \right) \qquad \frac{\partial b_z}{\partial t} = -\frac{d_i}{\kappa} \{\psi, \nabla_{\perp}^2 \psi\} + \frac{d_i b_0}{\kappa} \left(\frac{\partial}{\partial z} \left(\nabla_{\perp}^2 \psi \right) \right)$

Assumptions:

- strong guide field b_0
- weakly compressible plasma
- $\vec{b}(\vec{x},t) = (b_0 + b_z) \hat{e}_z + \hat{e}_z \times \vec{\nabla}_\perp \psi$

gradient along the guide field b_0 gradient along the local field $\dot{b}(\vec{x}, t)$ $d_i \sim 100 \,\mathrm{km}$

 $\frac{\partial \psi}{\partial t} = d_i \{\psi, b_z\} + d_i b_i \left(\frac{\partial \psi}{\partial z}\right) \qquad \frac{\partial b_z}{\partial t} = -\frac{d_i}{\kappa} \{\psi, \nabla_{\perp}^2 \psi\} + \frac{d_i b_0}{\kappa} \left(\frac{\partial}{\partial z} \left(\nabla_{\perp}^2 \psi\right)\right)$

J.h ω_k

kinetic Alfvén waves

Kinetic Alfvén Waves carrying information

Two timescales from the equations:

 $\tau_{\rm lin} \sim \frac{\kappa}{d_i b_0 k_\perp k_\parallel} \qquad \tau_{\rm nl} \sim \frac{\kappa}{d_i k_\perp^2 b_k} \qquad \longrightarrow \qquad \chi \equiv \frac{\tau_{\rm lin}}{\tau_{\rm nl}}$

Supercritical regime $(\tau_{\rm lin} \gg \tau_{\rm nl})$

Two timescales from the equations:

Not sustainable (causality issue)

Supercritical regime $\langle \tau_{lin} \gg \tau_{nl} \rangle$ Not sustainable (causality issue)

→ Strong turbulence $(\tau_{\text{lin}} \sim \tau_{\text{nl}}) \longrightarrow E_k \sim k_{\perp}^{-7/3} k_{\parallel}^{-1}$

Weak turbulence $(\tau_{\text{lin}} \ll \tau_{\text{nl}}) \longrightarrow E_k \sim k_{\perp}^{-5/2} k_{\parallel}^{-1/2}$

Two timescales from the equations:

[S. Nazarenko & A. Schekochihin, 2011, JFM]

$$\frac{1}{\tau_{lin} \gg \tau_{nl}} \quad \text{Not sustainable (causality issues)}$$

$$e \left(\tau_{\text{lin}} \sim \tau_{\text{nl}}\right) \longrightarrow E_k \sim k_{\perp}^{-7/3} k_{\parallel}^{-1}$$

$$\left(\tau_{\rm lin} \ll \tau_{\rm nl}\right) \longrightarrow E_k \sim k_{\perp}^{-5/2} k_{\parallel}^{-1/2}$$

Hardly distinguishable through their perpendicular spectra.

[J. Cho & A. Lazarian, 2004, ApJL]

[S. Galtier & A. Battacharjee, 2003, PoP]

Energy spectra

Two decades, 20% of noise

Energy spectra

Two decades, 20% of noise

 $k_{\perp}d_i$

Energy spectra

Two decades, 20% of noise

Another diagnostic is required to clearly differentiate the two regimes.

What does quantify intermittency?

Even repartition

What does quantify intermittency?

What does quantify intermittency?

Even repartition

Sparse repartition

Recipe:

Compute the magnetic field increments $\delta \dot{b}$. \bullet

 $\delta \vec{b} \equiv \vec{b}(\vec{x'}) - \vec{b}(\vec{x})$

Recipe:

- Compute the magnetic field increments δb . \bullet
- Raise its absolute value to a power $p \ge 1$.

 $\delta \vec{b} \equiv \vec{b}(\vec{x}') - \vec{b}(\vec{x})$

Recipe:

- Compute the magnetic field increments δb .
- Raise its absolute value to a power $p \ge 1$. •
- Compute its ensemble average $\langle |\delta b|^p \rangle$. •

 $\delta \vec{b} \equiv \vec{b}(\vec{x'}) - \vec{b}(\vec{x})$

Recipe:

- Compute the magnetic field increments δb .
- Raise its absolute value to a power $p \ge 1$.
- Compute its ensemble average $\langle \delta b | \rangle$.
- Repeat the operation for many values of \vec{r} and p.

3D direct numerical simulation

pseudo-spectral code: AsteriX [R. Meyrand et al., 2018, PRX]

3D direct numerical simulation

pseudo-spectral code: AsteriX [R. Meyrand et al., 2018, PRX]

3D direct numerical simulation

$b/b_0(x, y, z = 0.00 L_z)$

Strong turbulence

pseudo-spectral code: AsteriX [R. Meyrand et al., 2018, PRX]

Virtual spacecraft measurements

Virtual spacecraft measurements

Virtual spacecraft measurements

\Rightarrow Strong regime seems to be more intermittent

It seems to be the two regimes of interest.

1664 48 $k_z d_i$ 16

64

48

 $k_z d_i$

It really seems to be the two regimes of interest.

We have the two regimes of interest.

\Rightarrow monofractal Linear dependance on p.

- Linear dependance on p. \Rightarrow monofractal
- Nonlinear dependence on $p. \Rightarrow$ multifractal

- Weak regime is monofractal.
- Strong regime is multifractal.

- Weak regime is monofractal.
- Strong regime is multifractal.
- Intermittency distinguishes the two. •

p

[K. H. Kiyani et al., 2009, PRL]

p

[K. H. Kiyani et al., 2009, PRL]

[F. Sahraoui, 2020, PRL]

Transition range

Transition range \longrightarrow Heating caused by ion-cyclotron resonances.

Transition range \longrightarrow Heating caused by ion-cyclotron resonances.

 \rightarrow Helicity barrier. (only the balanced fraction of the energy can pass through this range)

Transition range \longrightarrow Heating caused by ion-cyclotron resonances. → Ion Landau damping.

----- Helicity barrier. (only the balanced fraction of the energy can pass through this range)

Transition range \longrightarrow Heating caused by ion-cyclotron resonances. Helicity barrier. (only the balanced fraction of the energy can pass through this range) Ion Landau damping.

This reset makes it impossible to explain these data using strong turbulence alone.

[T. A. Bowen, 2023, to be published]

[R. Meyrand et al., 2021, JPP]

[J. Squire et al., 2022, NatAs]

• High-res DNS of ERMHD in weak and strong regimes were performed.

- High-res DNS of ERMHD in weak and strong regimes were performed.
- Spectra are not enough to distinguish the two regimes.

- High-res DNS of ERMHD in weak and strong regimes were performed.
- Spectra are not enough to distinguish the two regimes.
- Only the weak regime has a monofractal intermittency.

- High-res DNS of ERMHD in weak and strong regimes were performed.
- Spectra are not enough to distinguish the two regimes.
- Only the weak regime has a monofractal intermittency.
- Caveat: viscous dissipation is used despite the solar wind being collisionless.

vincent.david@unh.edu

V. David et al., *submitted*

Additional slide

Depends on the type of wave. The order of the resonant wave interaction -2.

