MONOFRACTALITY IN THE SOLAR WIND AT ELECTRON SCALES
 Insights from kinetic Alfvén waves turbulence

Vincent DAVID

Space Science Center, University of New Hampshire, USA
Sébastien GALTIER
Laboratoire de Physique des Plasmas, Université Paris-Saclay, France
Romain MEYRAND
Department of physics, University of Otago, New Zealand

- strong guide field \vec{b}_{0}
- weakly compressible plasma
- $\vec{b}(\vec{x}, t)=\left(b_{0}+b_{z}\right) \hat{e}_{z}+\hat{e}_{z} \times \vec{\nabla}_{\perp} \psi$
- strong guide field \vec{b}_{0}
- weakly compressible plasma

$$
d_{i} \sim 100 \mathrm{~km}
$$

- $\vec{b}(\vec{x}, t)=\left(b_{0}+b_{z}\right) \hat{e}_{z}+\hat{e}_{z} \times \vec{\nabla}_{\perp} \psi$

ERMHD

$$
\frac{\partial \psi}{\partial t}=d_{i}\left\{\psi, b_{z}\right\}+d_{i} b_{0} \frac{\partial \psi}{\partial z}
$$

$$
\frac{\partial b_{z}}{\partial t}=-\frac{d_{i}}{\kappa}\left\{\psi, \nabla_{\perp}^{2} \psi\right\}+\frac{d_{i} b_{0}}{\kappa} \frac{\partial}{\partial z}\left(\nabla_{\perp}^{2} \psi\right)
$$

- strong guide field \vec{b}_{0}
- weakly compressible plasma
- $\vec{b}(\vec{x}, t)=\left(b_{0}+b_{z}\right) \hat{e}_{z}+\hat{e}_{z} \times \vec{\nabla}_{\perp} \psi$

$$
\frac{\partial b_{z}}{\partial t}=-\frac{d_{i}}{\kappa}\left\{\psi, \nabla_{\perp}^{2} \psi\right\}+\frac{d_{i} b_{0}}{\kappa} \partial_{\partial z}^{\partial z}\left(\nabla_{\perp}^{2} \psi\right)
$$

- strong guide field \vec{b}_{0}
- weakly compressible plasma

$$
d_{i} \sim 100 \mathrm{~km}
$$

- $\vec{b}(\vec{x}, t)=\left(b_{0}+b_{z}\right) \hat{e}_{z}+\hat{e}_{z} \times \vec{\nabla}_{\perp} \psi$

$$
\frac{\partial b_{z}}{\partial t}=-\frac{d_{i}}{\kappa}\left(\left\langle\psi, \nabla_{\perp}^{2} \psi\right\}\right)+\frac{d_{i} b_{0}}{\kappa} \frac{\partial}{\partial z}\left(\nabla_{\perp}^{2} \psi \psi\right)
$$

- strong guide field \vec{b}_{0}
- weakly compressible plasma
- $\vec{b}(\vec{x}, t)=\left(b_{0}+b_{z}\right) \hat{e}_{z}+\hat{e}_{z} \times \vec{\nabla}_{\perp} \psi$

$$
\frac{\partial b_{z}}{\partial t}=-\frac{d_{i}}{\kappa}\left(\left\langle\psi, \nabla_{\perp}^{2} \psi\right\}+\frac{d_{i} b_{0}}{\kappa} \frac{\partial}{\partial z}\left(\nabla_{\perp}^{2} \psi\right)\right)
$$

$$
\Longrightarrow \omega_{k}=\frac{d_{i} b_{0}}{\kappa} k_{\perp} k_{\|}
$$

Kinetic Alfvén Waves carrying information

Two timescales from the equations: $\quad \tau_{\text {lin }} \sim \frac{\kappa}{d_{i} b_{0} k_{\perp} k_{\|}} \quad \tau_{\mathrm{nl}} \sim \frac{\kappa}{d_{i} k_{\perp}^{2} b_{k}} \quad \chi \equiv \frac{\tau_{\text {lin }}}{\tau_{\mathrm{nl}}}$

Two timescales from the equations: $\quad \tau_{\text {lin }} \sim \frac{\kappa}{d_{i} b_{0} k_{\perp} k_{\|}} \quad \tau_{\mathrm{nl}} \sim \frac{\kappa}{d_{i} k_{\perp}^{2} b_{k}} \quad \chi \equiv \frac{\tau_{\text {lin }}}{\tau_{\mathrm{nl}}}$

Two timescales from the equations: $\quad \tau_{\text {lin }} \sim \frac{\kappa}{d_{i} b_{0} k_{\perp} k_{\|}} \quad \tau_{\mathrm{nl}} \sim \frac{\kappa}{d_{i} k_{\perp}^{2} b_{k}} \quad \longrightarrow \quad \chi \equiv \frac{\tau_{\text {lin }}}{\tau_{\mathrm{nl}}}$

Two timescales from the equations: $\quad \tau_{\text {lin }} \sim \frac{\kappa}{d_{i} b_{0} k_{\perp} k_{\|}} \quad \tau_{\mathrm{nl}} \sim \frac{\kappa}{d_{i} k_{\perp}^{2} b_{k}} \quad \longrightarrow \quad \chi \equiv \frac{\tau_{\text {lin }}}{\tau_{\mathrm{nl}}}$

Two timescales from the equations: $\quad \tau_{\operatorname{lin}} \sim \frac{\kappa}{d_{i} b_{0} k_{\perp} k_{\|}} \quad \tau_{\mathrm{nl}} \sim \frac{\kappa}{d_{i} k_{\perp}^{2} b_{k}} \quad \longrightarrow \quad \chi \equiv \frac{\tau_{\text {lin }}}{\tau_{\mathrm{nl}}}$

Two timescales from the equations: $\quad \tau_{\operatorname{lin}} \sim \frac{\kappa}{d_{i} b_{0} k_{\perp} k_{\|}} \quad \tau_{\mathrm{nl}} \sim \frac{\kappa}{d_{i} k_{\perp}^{2} b_{k}} \quad \longrightarrow \quad \chi \equiv \frac{\tau_{\text {lin }}}{\tau_{\mathrm{nl}}}$

Hardly distinguishable through their perpendicular spectra.

Two decades, 20% of noise

Two decades, 20% of noise

Two decades, 20% of noise

Another diagnostic is required to clearly differentiate the two regimes.

What does quantify intermittency?

What does quantify intermittency?

Even repartition

What does quantify intermittency?

Even repartition

Sparse repartition

Intermittency

Recipe:

Recipe:

- Compute the magnetic field increments $\delta \vec{b}$.

Recipe:

- Compute the magnetic field increments $\delta \vec{b}$.
- Raise its absolute value to a power $p \geq 1$.

Recipe:

- Compute the magnetic field increments $\delta \vec{b}$.
- Raise its absolute value to a power $p \geq 1$.
- Compute its ensemble average $\left.\left.\langle | \delta b\right|^{p}\right\rangle$.

Recipe:

- Compute the magnetic field increments $\delta \vec{b}$.
- Raise its absolute value to a power $p \geq 1$.
- Compute its ensemble average $\left.\left.\langle | \delta b\right|^{p}\right\rangle$.

$$
\delta \vec{b} \equiv \vec{b}\left(\overrightarrow{x^{\prime}}\right)-\vec{b}(\vec{x})
$$

- Repeat the operation for many values of \vec{r} and p.

Weak turbulence

Weak turbulence

Strong turbulence

\Rightarrow Strong regime seems to be more intermittent

It seems to be the two regimes of interest.

It seems to be the two regimes of interest.

What about spectra?

It really seems to be the two regimes of interest.

We have the two regimes of interest.

- Weak regime is monofractal.

Transition range

Transition range \longrightarrow Heating caused by ion-cyclotron resonances.

Transition range \longrightarrow Heating caused by ion-cyclotron resonances.
\longrightarrow Helicity barrier. (only the balanced fraction of the energy can pass through this range)

Transition range \longrightarrow Heating caused by ion-cyclotron resonances.
\longrightarrow Helicity barrier. (only the balanced fraction of the energy can pass through this range)
\longrightarrow Ion Landau damping.

Transition range \longrightarrow Heating caused by ion-cyclotron resonances.
\longrightarrow Helicity barrier. (only the balanced fraction of the energy can pass through this range)
\longrightarrow Ion Landau damping.

This reset makes it impossible to explain these data using strong turbulence alone.

- High-res DNS of ERMHD in weak and strong regimes were performed.
- High-res DNS of ERMHD in weak and strong regimes were performed.
- Spectra are not enough to distinguish the two regimes.
- High-res DNS of ERMHD in weak and strong regimes were performed.
- Spectra are not enough to distinguish the two regimes.
- Only the weak regime has a monofractal intermittency.
- High-res DNS of ERMHD in weak and strong regimes were performed.
- Spectra are not enough to distinguish the two regimes.
- Only the weak regime has a monofractal intermittency.
- Caveat: viscous dissipation is used despite the solar wind being collisionless.

$$
\frac{\partial E_{k}}{\partial t}=\frac{\partial}{\partial k}\left[k^{m} E_{k}^{n} \frac{\partial}{\partial k}\left(\frac{E_{k}}{k^{d-1}}\right)\right], \quad \overbrace{(m, n, d)=(7,1,2)}^{\rightarrow} \begin{aligned}
& \text { Depends on the type of wave. } \\
& \text { The order of the resmant we me interaction }-2 \text {. }
\end{aligned}
$$

