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≪ 1

Weak turbulence (τlin ≪ τnl)

Not sustainable (causality issue)

Ek ∼ k−5/2
⊥ k−1/2

∥

Ek ∼ k−7/3
⊥ k−1

∥

Hardly distinguishable through their perpendicular spectra.

[S. Galtier & A. Battacharjee, 2003, PoP][J. Cho & A. Lazarian, 2004, ApJL][S. Nazarenko & A. Schekochihin, 2011, JFM]
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Energy spectra

Two decades, 20% of noise

Another diagnostic is required to clearly differentiate the two regimes.
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Recipe:

• Compute the magnetic field increments .δb⃗

• Raise its absolute value to a power .p ≥ 1

• Compute its ensemble average .⟨ δb
p⟩ δb⃗ ≡ b⃗( ⃗x′ ) − b⃗( ⃗x)

• Repeat the operation for many values of  and .⃗r p
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 Strong regime seems 
to be more intermittent  
⇒

Virtual spacecraft measurements 9/19
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Identification of the regimes

We have the two regimes of interest.
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The slopes have
Linear dependance on .p

Nonlinear dependence on .p

 monofractal⇒

 multifractal⇒
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Intermittency

• Weak regime is monofractal.

• Strong regime is multifractal.

• Intermittency distinguishes the two.
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The reset

Transition range Heating caused by ion-cyclotron resonances.

Helicity barrier. (only the balanced fraction of the 
energy can pass through this range)

This reset makes it impossible to 
explain these data using strong 
turbulence alone.

[T. A. Bowen, 2023, to be published] [R. Meyrand et al., 2021, JPP] [J. Squire et al., 2022, NatAs]
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Ion Landau damping.
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• High-res DNS of ERMHD in weak and strong regimes were performed.

Take home message

• Spectra are not enough to distinguish the two regimes.

• Only the weak regime has a monofractal intermittency.

• Caveat: viscous dissipation is used despite the solar wind being collisionless.
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[V. David et al., submitted]vincent.david@unh.edu
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[V. David, PhD manuscript]
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The order of the resonant wave interaction -2.
The dimension of the system.

Depends on the type of wave.


