

CNrs

Magnetospheric MultiScale Measurements of Energy Balance in Collisionless Plasma

Souhail Dahani¹, B. Lavraud^{1,2}, V. Génot¹, S. Toledo-Redondo³, R. Kieokaew¹, N. Fargette⁴, D. Gershman⁵, B. Giles⁵, R. Torbert⁶, J. Burch⁷

> ¹ IRAP, CNRS, UPS, CNES, Toulouse, France ² LAB, CNRS, UB, CNES, Bordeaux, France ³ Department of Electromagnetism, UM, Murcla Spain ⁴ The Blackett laboratory, Imperial College London, London, UK ⁵ NASA GSFC, MD, USA ⁶ SCC, University of New Hampshire, NH, USA ⁷ SwRI, TX, USA

PNST (Programme National Soleil Terre) Colloque scientifique 08-12 Janvier 2024

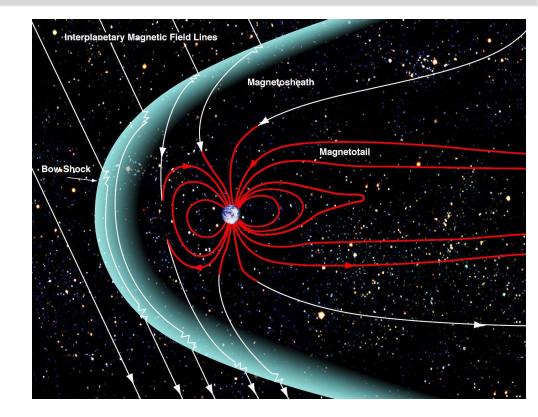
Outline

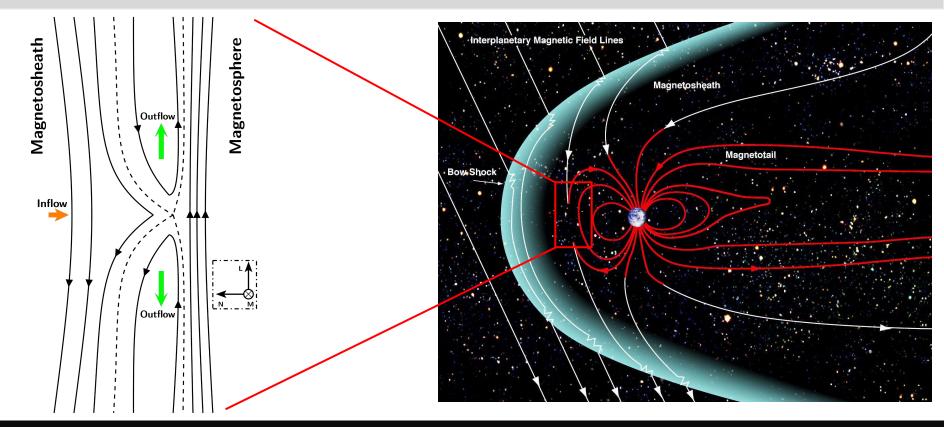
General context and data

Energy conversion and motivation

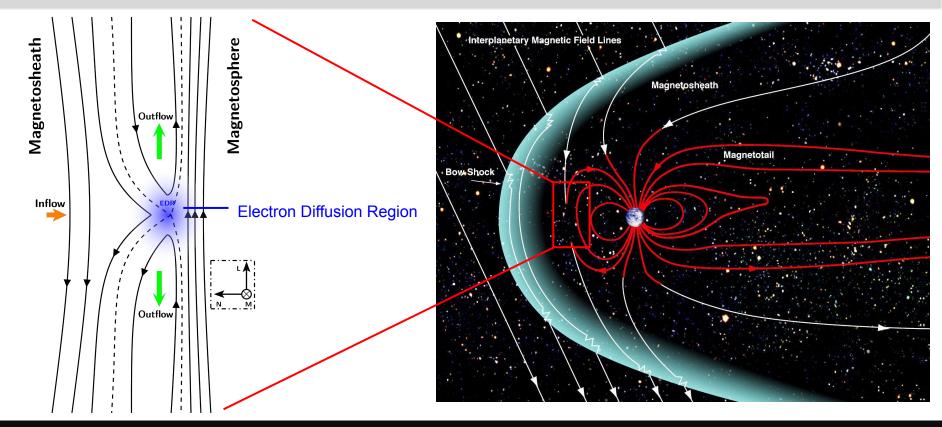
Results and discussion

Conclusions

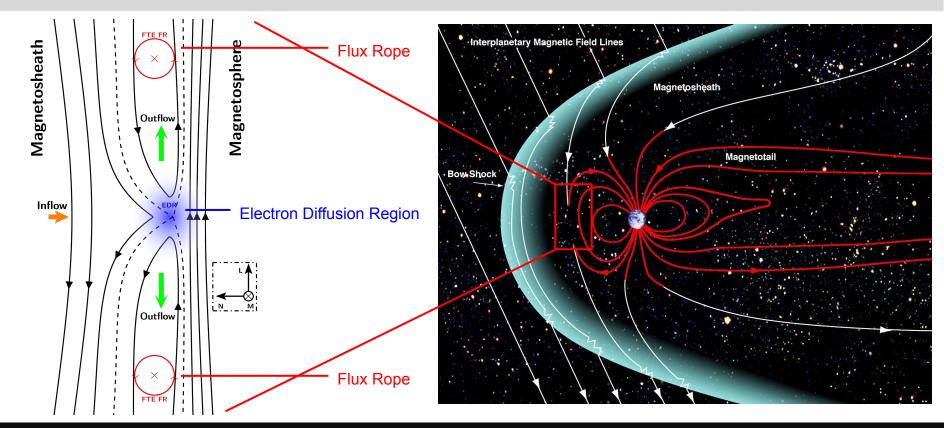




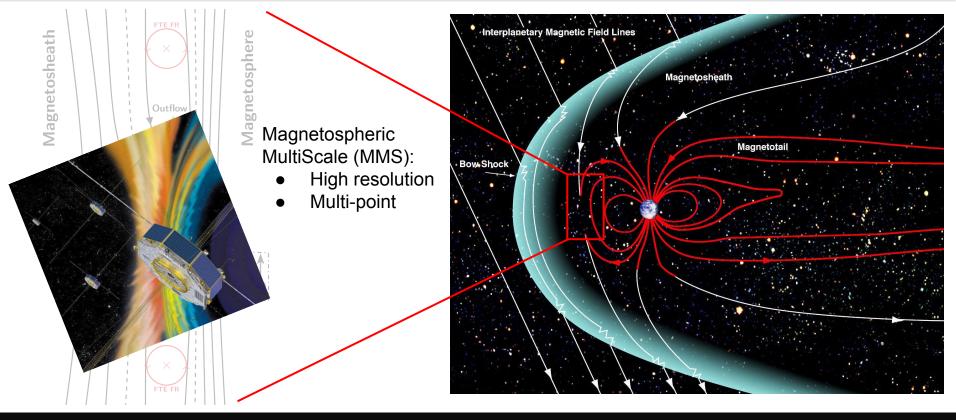
sdahani@irap.omp.eu



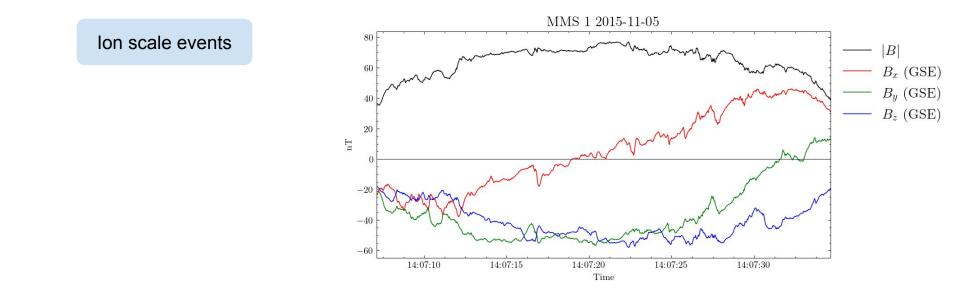
sdahani@irap.omp.eu



Probing near Earth environment

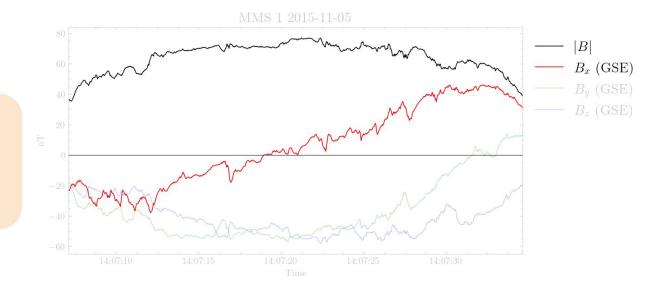


Data: Flux Transfer Events (FTEs)

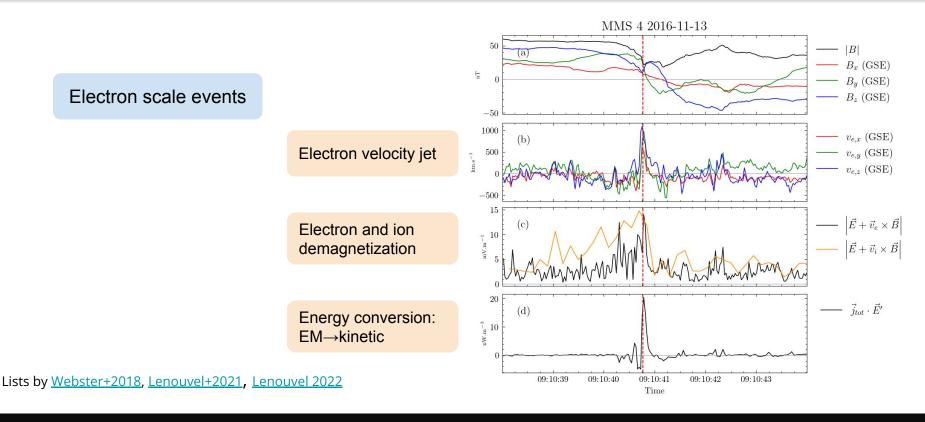


Data: Flux Transfer Events (FTEs)

- Bipolar variation in the normal component
- Enhancement in the total field



Data: Electron Diffusion Regions (EDRs)



sdahani@irap.omp.eu

Outline

General context and data

Energy conversion and motivation

Results and discussion

Conclusions

Energy equation

In a multifluid description:

Fadanelli+2020

$$d_t K_s = (\partial_t + \vec{v}_s \cdot \vec{\nabla}) K_s = -K_s \vec{\nabla} \cdot \vec{v}_s - \vec{v}_s \cdot \vec{\nabla} \cdot \vec{\bar{P}}_s + \vec{j}_s \cdot \vec{E}$$

Kinetic energy:
$$K_s = \frac{1}{2}m_s n_s \vec{v}_s^2$$

Current density: $\vec{j}_s = q_s n_s \vec{v}_s$

Species:	s
Pressure tensor:	$\bar{\bar{P}}_s$
Velocity vector:	$ec{v}_s$
Elementary charge:	q_s
Density number:	n_s
Electric field vector:	$ec{E}$
Mass:	m_s

C

Energy equation

In a multifluid description:

Fadanelli+2020

$$d_t K_s = (\partial_t + \vec{v}_s \cdot \vec{\nabla}) K_s = -K_s \vec{\nabla} \cdot \vec{v}_s - \vec{v}_s \cdot \vec{\nabla} \cdot \vec{\bar{P}}_s + \vec{j}_s \cdot \vec{E}$$

$$K_s = \frac{1}{2}m_s n_s \vec{v}_s^2$$

Pressure tensor:
$$\bar{P}_s$$

Velocity vector: \vec{v}_s
Elementary charge: q_s
Density number: n_s
Electric field vector: \vec{E}
Mass: m_s

sdahani@irap.omp.eu

Energy balance

$$\partial_t K_s + \vec{\nabla} \cdot (K_s \vec{v}_s) = -\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s + \vec{j}_s \cdot \vec{E}$$

$$\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s = \vec{j}_s \cdot \vec{E}$$

Energy balance

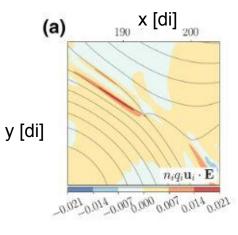
$$\partial_t K_s + \vec{\nabla} \cdot (K_s \vec{v}_s) = -\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s + \vec{j}_s \cdot \vec{E}$$

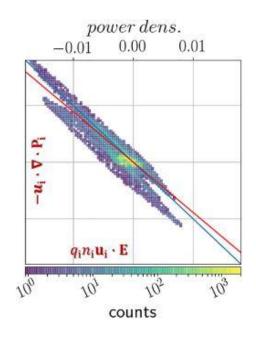
$$\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s = \vec{j}_s \cdot \vec{E}$$

$$\vec{\nabla} \cdot \bar{\vec{P}}_{tot} = \vec{J}_{tot} \times \vec{B}$$

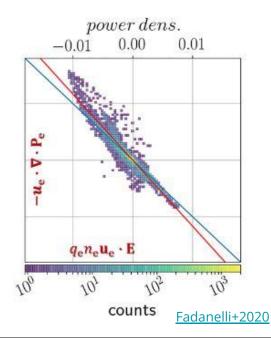
Motivation

Reconnection site in turbulent plasma using hybrid Vlasov-Maxwell code (Fadanelli+2020)



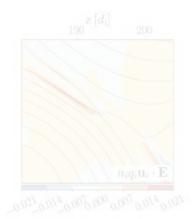


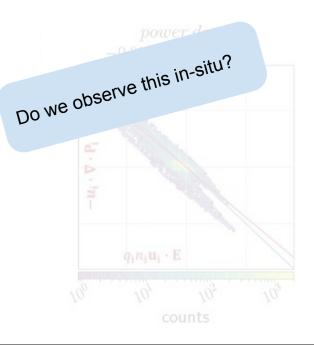
$$\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s = \vec{j}_s \cdot \vec{E}$$



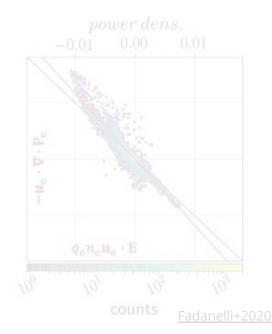
Motivation

Reconnection site in turbulent plasma using hybrid Vlasov-Maxwell code (Fadanelli+2020)





$$\vec{v}_s \cdot \vec{\nabla} \cdot \vec{\bar{P}}_s = \vec{j}_s \cdot \vec{E}$$



sdahani@irap.omp.eu

Outline

General context and data

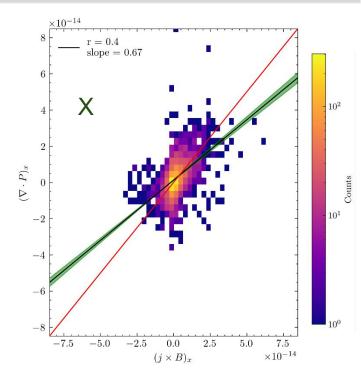
Energy conversion and motivation

Results and discussion

Conclusions

Force balance: mono-fluid case

- The expected relationship in the <u>force</u> and <u>mono fluid</u> version is promising
- Similar representation for energy terms is less clear

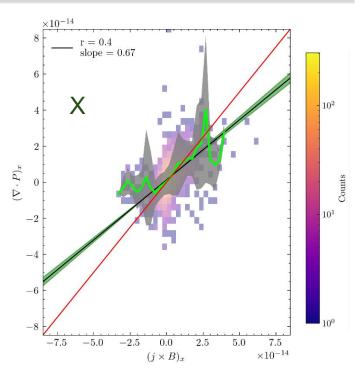


Force balance: mono-fluid case

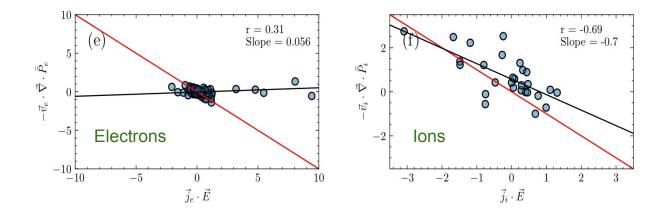
- The expected relationship in the <u>force</u> and <u>mono fluid</u> version is promising
- Similar representation for energy terms is less clear

The addition of binned means supports linear regression results

$$\vec{J}_{tot} \times \vec{B}$$
 vs $\vec{\nabla} \cdot \bar{\vec{P}}_{tot}$



Case study $\vec{j}_s \cdot \vec{E}$ vs $-\vec{v}_s \cdot \vec{\nabla} \cdot \vec{\bar{P}}_s$

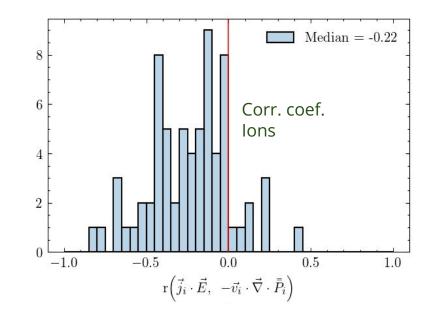


The expected relationship is approximately found for ion measurements but not for electrons

Statistical study

$$\vec{j}_s \cdot \vec{E}$$
 vs $-\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s$

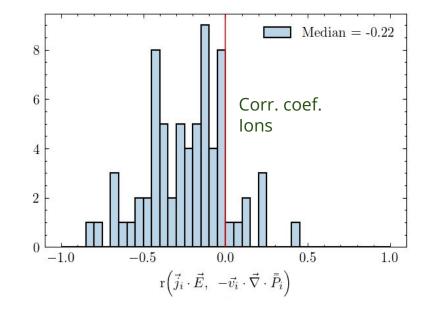
- The linear relationship between the two terms is overall negative for ions
- This relationship is not found for electrons despite the slight negative tendency in r



Statistical study

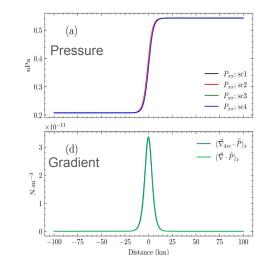
$$\vec{j}_s \cdot \vec{E}$$
 vs $-\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s$

- The linear relationship between the two terms is overall negative for ions
- This relationship is not found for electrons despite the slight negative tendency in r

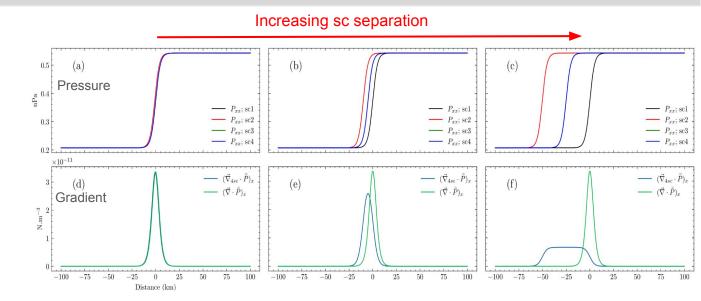


What can be improved ?

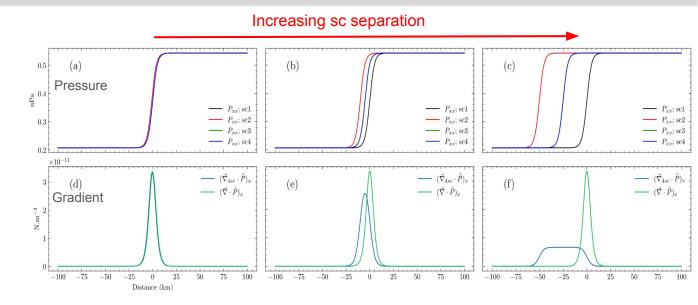
- Modelling pressure gradient
- Comparing gradient from
 - analytical derivative
 - **4sc method** $\vec{\nabla}_{4sc} \cdot \bar{P}$



- Modelling pressure gradient
- Comparing gradient from
 - analytical derivative
 - 4sc method $\vec{\nabla}_{4sc} \cdot \bar{P}$



- Modelling pressure gradient
- Comparing gradient from
 - analytical derivative
 - 4sc method $\vec{\nabla}_{4sc} \cdot \bar{P}$



If the separation is:

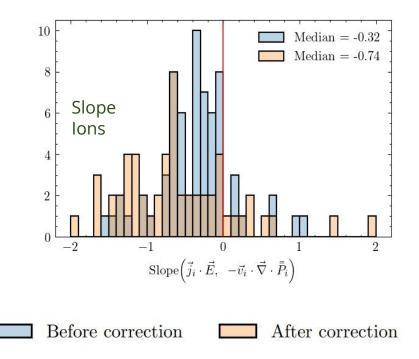
- comparable or smaller than the scale: small errors
- larger than the scale: large errors→ <u>underestimating the gradient</u>

In agreement with Forsyth+2009 in Cluster context for current estimation

Statistical study: corrected version?

$$\vec{j}_s \cdot \vec{E}$$
 vs $-\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s$

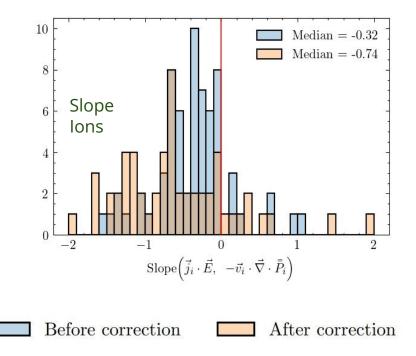
• Corrections do not fix correlations but improve ions slope.



Statistical study: corrected version?

$$\vec{j}_s \cdot \vec{E}$$
 vs $-\vec{v}_s \cdot \vec{\nabla} \cdot \bar{\vec{P}}_s$

• Corrections do not fix correlations but improve ions slope.



- Simple model: regular tetrahedra, no background noise, ...
- Other errors: plasma moments errors propagation (<u>Roberts+2023</u>), linear regression errors, ...

Outline

General context and data

Energy conversion and motivation

Results and discussion

Conclusions

Conclusions

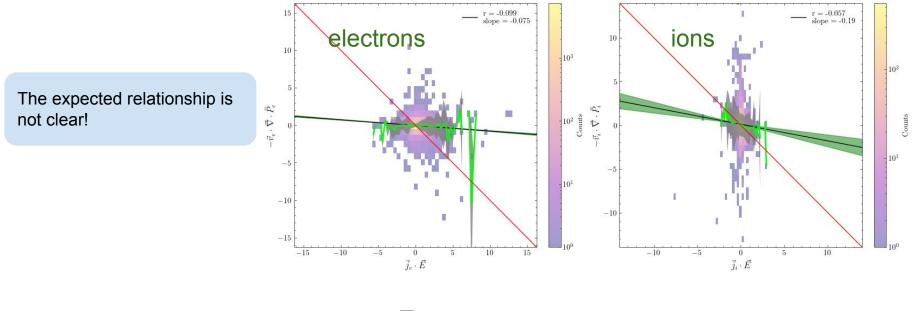
- The expected balance is weakly observed for ions but it is less clear for electrons, despite the attempted correction. This is different from what was found in simulations (Fadanelli+2020).
- The relationship is statistically present in the monofluid version of the force balance and it appears to be more favourable than the multifluid version.
- Signs of the terms are opposite for ions and electrons as expected from the balance between those terms.
- Overall the pressure gradient is observed to be underestimated. Taking into account thi aspect improves ions slope. Other source of errors should be considered.

What's next?

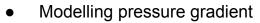
- Improve the model
- Extending our study to the bow shock region
- Role of each term in accelerating, heating the plasma and producing or annihilating magnetic energy

Merci de votre attention

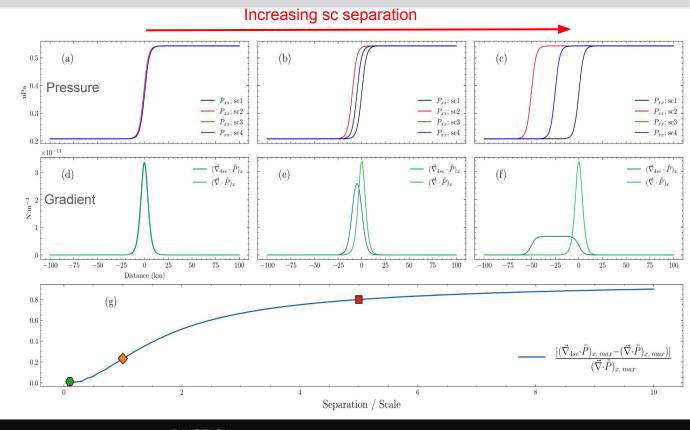
Energy balance



$$\vec{j}_s \cdot \vec{E}$$
 vs $-\vec{v}_s \cdot \vec{\nabla} \cdot \vec{\bar{P}}_s$



- Comparing gradient from
 - analytical derivative
 - 4sc method $\vec{\nabla}_{4sc} \cdot \bar{P}$



sdahani@irap.omp.eu