

IRIS: A RADIATIVE TRANSFER SIMULATION TOOL FOR SPACE-BASED GHG OBSERVATION MISSIONS

PhD student: Cannelle CLAVIER – cannelle.clavier@latmos.ipsl.fr

Ecole Doctorale Astronomie et Astrophysique d'Ile de France

Marseille – 9th January 2024

PNST

@latmos.ipsl.fr de France

PhD supervisor: Mustapha Meftah

II. Description of the Uvsq-Sat NG space-based mission

III. Methods for Evaluating the performances of GHG Instruments using SolAtmos

IV. Results – Application to the Uvsq-Sat NG mission

V. Conclusions & Perspectives

Climate change represents one of the most significant challenge of the 21st century.

Increasing anthropogenic emissions, particularly from fossil fuel burning, have led to an unprecedented rise in the atmospheric concentration of greenhouse gases (GHG), resulting in enhanced trapping of terrestrial infrared radiation and an unbalanced Earth's Radiation Budget (ERB).

The Global Climate Observing System (GCOS) has identified 55 Essential Climate variables (ECVs) that have to be monitored closely as:

→ Earth Radiative Budget (ERB) and greenhouse gases column are main ECVs that must be monitored, → Greenhouse Gases (GHG) such as carbon dioxide (CO_2) and methane (CH_4).

Requirements for a hypothetical satellite constellation named Terra-F							
Parameter	Absolute accuracy	Stability per decade	Spatial resolution	Temporal resolution			
TSI	$\pm 0.54 { m Wm^{-2}}$	$\pm 0.14 { m Wm^{-2}}$	_	24 hours			
OSR	$\pm 1.00 {\rm Wm^{-2}}$	$\pm 0.10 { m Wm^{-2}}$	10 - 100 km	3 hours			
OLR	$\pm 1.00 {\rm Wm^{-2}}$	$\pm 0.10 { m Wm^{-2}}$	10 - 100 km	3 hours			
EEI	$\pm 1.00 \mathrm{Wm^{-2}}$	$\pm 0.10 { m Wm^{-2}}$	_	24 hours			
CO ₂	±1.0 ppm	±1.5 ppm	2–10 km	3 hours			
CH ₄	±10.0 ppb	±7.0 ppb	2–10 km	3 hours			

(ECVs) that have to be monitored closely as: e monitored,

Meftah et al. 2023

Many space missions have already been launched to monitor GHG from space.

Sa	tellite / Instrument	Satellite Type	Operational Period	XCO ₂ Accuracy	XCH ₄ Accuracy	References
	SCIAMACHY	Large	2002-2012	1.2 ppm	20 ppb	Schneising et al. (2012) [9]
	GOSAT	Large	2009–Present	2 ppm	13 ppb	Kuze et al. (2016) [10]
	OCO-2	Large	2014–Present	0.65 ppm	7	Worden et al. (2017) [11]
	GHGSat	SmallSat	2016–Present	4.2 ppm	95 ppb	Jervis et al. (2021) [12]
	TROPOMI	Large	2017 – Present	/	< 20 ppb	Lorente et al. (2021) [13]
	Uvsq-Sat NG	SmallSat	From 2025	1 ppm	10 ppb	Meftah et al. (2023) [6]
	MicroCarb	MicroSat	From 2025	<0.2 ppm	/	Meftah et al. (2023) [14]
	Merlin	Large	From 2028	/	3.7 ppb	Ehret et al. (2017) [15]

Scientific requirements for a few key space missions.

Many space missions have already been launched to monitor GHG from space.

To assess the performance of such space-bases missions, it is necessary to implement simulators. As part of the Uvsq-Sat NG mission, we have established a tool that provides an insight into the achievable performance of this mission.

Clavier et al. 2024 (submitted)

II. Description of the Uvsq-Sat NG space-based mission

III. Methods for Evaluating the performances of GHG Instruments using SolAtmos

IV. Results – Application to the Uvsq-Sat NG mission

V. Conclusions & Perspectives

II. Description of the Uvsq-Sat NG mission

Scientific objectives:

- ERB (OSR, OLR)
- GHG (CO_2, CH_4, H_2O) _

Main properties:

- Mass: 10.0 kg
- Power: 35 W
- _

Payloads:

Parameter	Spectrometer	NanoCam	ERS sensors
Field of view	0.15°	13°	180°
Aperture / Surface	15 mm	32 mm	10 imes10mm
Spectral range	1200 – 2000 nm	390 – 690 nm	$0.1 - 100 \mid 0.1 - 3 \mu m$
Image Size	1×256 pixels	2048×1536 pixels	1×1 element
Pixel size	$250 \times 50 \mu \mathrm{m}$	$3.2 \times 3.2 \mu\mathrm{m}$	10 imes10mm
Spectral resolution	1 to 6 nm	-	-
Spatial resolution	< 2 km	< 30 m	2500 km

Orbit: Sun-Synchronous Orbit – 535 km

II. Description of the Uvsq-Sat NG mission

II. Description of the Uvsq-Sat NG mission

8

Outline

- I. Introduction
- II. Description of the Uvsq-Sat NG space-based mission **III.** Methods for Evaluating the performances of GHG **Instruments using SolAtmos**
- IV. Results Application to the Uvsq-Sat NG mission
- V. Conclusions & Perspectives

III. Methods for evaluating GHGs observations

SolAtmos is an end-to-end simulator developed to assess performances of space-based instruments designed to monitor greenhouse gases.

Inputs: **SolAtmos** is based on 3 numerical tools: Solar Spectrum, Atmospheric, Surface and Objectives Tool Instrument parameters Simulation of spectral radiances at IRIS instrument level Simulation of the optical and radiometric **OptiSpectra** performances of the instrument Tool 1: Determination of the GHG concentrations IRIS GHGRetrieval according to IRIS and OptiSpectra results **Spectral Radiance** Tool 2: at TOA **OptiSpectra**

Outputs:

GHG (CO_2 , CH_4 , H_2O) and O₂ concentrations and uncertainties

III. Evaluation of the performances of GHG Instruments

 \Box Tool 1 – IRIS \rightarrow Simulation of spectral radiances at instrument level

III. Evaluation of the performances of GHG Instruments

 \Box Tool 2 – OptiSpectra \rightarrow Simulation of the optical and radiometric performances of the instrument

III. Evaluation of the performances of GHG Instruments

 \Box Tool 3 – GHGretrieval \rightarrow Determination of the GHG concentrations according to IRIS and OptiSpectra results

Outline

- Introduction Ι.
- II. Description of the Uvsq-Sat NG space-based mission
- **III.** Methods for Evaluating the performances of GHG Instruments using SolAtmos

IV.Results – Application to the Uvsq-Sat NG mission

V. Conclusions & Perspectives

The SolAtmos end-to-end simulator has been developed to evaluate the performances of space-based instruments that are designed for the monitoring of GHG such as CO_2 and CH_4 .

Various cases have been studied:

'Surface'	Pine forest	Deciduous forest	Ocean
'Aerosols'	(a)	(b)	(c)
Continental	Х	Х	Х
Desert	Х	Х	Х
Maritime	Х	Х	Х
Urban	Х	Х	Х

16 scenarios studied for different 'Aerosols' types and targeted 'Surface' –

'Aerosols'	Continental	Desert	Maritime
'SZA'	(a)	(b)	(c)
0°	Х	Х	Х
20°	Х	Х	Х
50°	Х	Х	Х
70°	Х	Х	Х

16 scenarios studied for different SZA and 'Aerosols' types – Pine forest targeted 'Surface'.

Homogeneo	ous snow
(d)	
Х	
Х	
Х	
Х	
′ – SZA of 20°.	
Urban	
(d)	
Х	
Х	
Х	
Х	

 \Box Tool 1 – IRIS \rightarrow Simulation of spectral radiances at instrument level

Example of an IRIS simulation studying the impact of the different aerosols above a pine forest scene for a 20° SZA on the TOA radiance.

 \Box Tool 2 – OptiSpectra \rightarrow Simulation of the optical and radiometric performances of the instrument

Example of an OptiSpectra simulation studying the impact of the different aerosols above a pine forest scene for a 20° SZA on the spectral SNR.

 \Box Tool 3 – GHGretrieval \rightarrow Determination of the GHG concentrations according to IRIS and OptiSpectra results

Example of a GHGRetrieval results for continental aerosols above a pine forest scene for a 20° SZA. The Uvsq-Sat NG spectrometer is supposed to have an 1 nm spectral resolution.

18

Results of the SolAtmos global toolchain applied to the Uvsq-Sat NG mission for CO₂ determination

	Uvsq-Sat NG	instrument spectral re	solution: 1 nm	L					
Surface	Pine forest	Deciduous forest	Ocean	Homogeneous snow	Uvsq-S	at NG instrument	t spectral reso	lution: 1 nm	
	(a)	(b)	(c)	(d)	Aerosols	Continental	Desert	Maritime	Urban
Aerosols	(1)	(~)		(4)	SZA	(a)	(b)	(c)	(d)
Continental	0.5 ppm	0.4 ppm	77.6 ppm	0.3 ppm	0°	0.5 ppm	0.4 ppm	0.6 ppm	0.5 ppm
Desert	0.5 ppm	0.3 ppm	82.8 ppm	0.3 ppm	20°	0.5 ppm	0.5 ppm	0.6 ppm	0.5 ppm
Maritime	0.6 ppm	0.4 ppm	81.4 ppm	0.3 ppm	50°	0.8 ppm	0.8 ppm	1.0 ppm	0.9 ppm
Urban	0.5 ppm	0.4 ppm	78.4 ppm	0.3 ppm	70°	2.2 ppm	1.7 ppm	2.9 ppm	2.2 ppm
Uvsq-Sat NG instrument spectral resolution: 5 nm									
	Uvsq-Sat NG	instrument spectral re	solution: 5 nm	L	Uvsq-S	at NG instrument	t spectral reso	lution: 5 nm	
Surface	Uvsq-Sat NG	instrument spectral re Deciduous forest	ocean	Homogeneous snow	Uvsq-S Aerosols	at NG instrument Continental	t spectral reso Desert	lution: 5 nm Maritime	Urban
Surface	Uvsq-Sat NG Pine forest	instrument spectral re Deciduous forest (b)	ocean	Homogeneous snow	Uvsq-S Aerosols SZA	at NG instrument Continental (a)	t spectral reso Desert (b)	lution: 5 nm Maritime (c)	Urban (d)
Surface Aerosols	Uvsq-Sat NG Pine forest (a)	instrument spectral re Deciduous forest (b)	esolution: 5 nm Ocean (c)	Homogeneous snow (d)	Uvsq-S Aerosols SZA 0°	at NG instrument Continental (a) 1.2 ppm	t spectral reso Desert (b) 1.0 ppm	olution: 5 nm Maritime (c) 1.3 ppm	Urban (d) 1.1 ppm
Surface Aerosols Continental	Uvsq-Sat NG Pine forest (a) 1.3 ppm	instrument spectral re Deciduous forest (b) 0.9 ppm	esolution: 5 nm Ocean (c) 234.5 ppm	Homogeneous snow (d) 0.7 ppm	Uvsq-S Aerosols SZA 0° 20°	at NG instrument Continental (a) 1.2 ppm 1.3 ppm	t spectral reso Desert (b) 1.0 ppm 1.1 ppm	Jution: 5 nm Maritime (c) 1.3 ppm 1.5 ppm	Urban (d) 1.1 ppm 1.1 ppm
Surface Aerosols Continental Desert	Uvsq-Sat NG Pine forest (a) 1.3 ppm 1.7 ppm	instrument spectral re Deciduous forest (b) 0.9 ppm 0.8 ppm	esolution: 5 nm Ocean (c) 234.5 ppm 225.8 ppm	Homogeneous snow (d) 0.7 ppm 0.6 ppm	Uvsq-S Aerosols SZA 0° 20° 50°	at NG instrument Continental (a) 1.2 ppm 1.3 ppm 2.0 ppm	t spectral reso Desert (b) 1.0 ppm 1.1 ppm 1.7 ppm	Jution: 5 nm Maritime (c) 1.3 ppm 1.5 ppm 2.4 ppm	Urban (d) 1.1 ppm 1.1 ppm 2.0 ppm
Surface Aerosols Continental Desert Maritime	Uvsq-Sat NG Pine forest (a) 1.3 ppm 1.7 ppm 1.4 ppm	instrument spectral re Deciduous forest (b) 0.9 ppm 0.8 ppm 1.1 ppm	esolution: 5 nm Ocean (c) 234.5 ppm 225.8 ppm 228.6 ppm	Homogeneous snow (d) 0.7 ppm 0.6 ppm 0.8 ppm	Uvsq-S Aerosols SZA 0° 20° 50° 70°	at NG instrument Continental (a) 1.2 ppm 1.3 ppm 2.0 ppm 5.6 ppm	t spectral reso Desert (b) 1.0 ppm 1.1 ppm 1.7 ppm 4.3 ppm	olution: 5 nm Maritime (c) 1.3 ppm 1.5 ppm 2.4 ppm 6.5 ppm	Urban (d) 1.1 ppm 1.1 ppm 2.0 ppm 5.2 ppm

 CO_2 uncertainties (at 1σ) determination according to the various simulation cases (requirements: 1 ppm).

Q Results of the SolAtmos global toolchain applied to the Uvsq-Sat NG mission for CO₄ determination

	Uvsq-Sat NG	instrument spectral re	solution: 1 nm	1					
Surface	Pine forest	Deciduous forest	Ocean	Homogeneous snow	Uvsq-S	at NG instrumen	t spectral reso	lution: 1 nm	
	(a)	(b)	(c)	(d)	Aerosols	Continental	Desert	Maritime	Urban
Aerosols	(4)	(~)	(0)	(4)	SZA	(a)	(b)	(c)	(d)
Continental	4.9 ppb	3.7 ppb	194.1 ppb	2.5 ppb	0°	4.2 ppb	3.8 ppb	5.0 ppb	4.1 ppb
Desert	4.4 ppb	3.2 ppb	184.8 ppb	2.4 ppb	20°	4.5 ppb	4.3 ppb	5.6 ppb	4.3 ppb
Maritime	5.8 ppb	4.2 ppb	202.2 ppb	3.2 ppb	50°	7.3 ppb	5.8 ppb	8.9 ppb	6.6 ppb
Urban	4.7 ppb	3.4 ppb	193.4 ppb	2.8 ppb	70°	14.7 ppb	12.6 ppb	19.4 ppb	14.7 ppb
Uvsq-Sat NG instrument spectral resolution: 5 nm									
	Uvsq-Sat NG	instrument spectral re	solution: 5 nm	l	Uvsq-S	at NG instrumen	t spectral reso	lution: 5 nm	11
Surface	Uvsq-Sat NG Pine forest	instrument spectral re Deciduous forest	solution: 5 nm Ocean	Homogeneous snow	Uvsq-S Aerosols	at NG instrumen Continental	t spectral reso Desert	lution: 5 nm Maritime	Urban
Surface	Uvsq-Sat NG Pine forest (a)	instrument spectral re Deciduous forest (b)	solution: 5 nm Ocean (c)	Homogeneous snow (d)	Uvsq-S Aerosols SZA	at NG instrumen Continental (a)	t spectral reso Desert (b)	lution: 5 nm Maritime (c)	Urban (d)
Surface Aerosols	Uvsq-Sat NG Pine forest (a)	instrument spectral re Deciduous forest (b)	solution: 5 nm Ocean (c)	Homogeneous snow (d)	Uvsq-S Aerosols SZA 0°	at NG instrumen Continental (a) 12.7 ppb	t spectral reso Desert (b) 11.2 ppb	lution: 5 nm Maritime (c) 14.3 ppb	Urban (d) 11.4 ppb
Surface Aerosols Continental	Uvsq-Sat NG Pine forest (a) 12.2 ppb	instrument spectral re Deciduous forest (b) 10.2 ppb	solution: 5 nm Ocean (c) 735.6 ppb	Homogeneous snow (d) 7.8 ppb	Uvsq-S Aerosols SZA 0° 20°	at NG instrumen Continental (a) 12.7 ppb 13.1 ppb	t spectral reso Desert (b) 11.2 ppb 12.5 ppb	lution: 5 nm Maritime (c) 14.3 ppb 15.2 ppb	Urban (d) 11.4 ppb 12.8 ppb
Surface Aerosols Continental Desert	Uvsq-Sat NG Pine forest (a) 12.2 ppb 10.5 ppb	instrument spectral re Deciduous forest (b) 10.2 ppb 8.5 ppb	solution: 5 nm Ocean (c) 735.6 ppb 710.8 ppb	Homogeneous snow (d) 7.8 ppb 7.0 ppb	Uvsq-S Aerosols SZA 0° 20° 50°	at NG instrumen Continental (a) 12.7 ppb 13.1 ppb 19.9 ppb	t spectral reso Desert (b) 11.2 ppb 12.5 ppb 16.7 ppb	lution: 5 nm Maritime (c) 14.3 ppb 15.2 ppb 23.4 ppb	Urban (d) 11.4 ppb 12.8 ppb 19.9 ppb
Surface Aerosols Continental Desert Maritime	Uvsq-Sat NG Pine forest (a) 12.2 ppb 10.5 ppb 15.5 ppb	instrument spectral re Deciduous forest (b) 10.2 ppb 8.5 ppb 12.7 ppb	solution: 5 nm Ocean (c) 735.6 ppb 710.8 ppb 763.2 ppb	Homogeneous snow (d) 7.8 ppb 7.0 ppb 8.8 ppb	Uvsq-S Aerosols SZA 0° 20° 50° 70°	at NG instrumen Continental (a) 12.7 ppb 13.1 ppb 19.9 ppb 41.0 ppb	t spectral reso Desert (b) 11.2 ppb 12.5 ppb 16.7 ppb 37.8 ppb	lution: 5 nm Maritime (c) 14.3 ppb 15.2 ppb 23.4 ppb 53.1 ppb	Urban (d) 11.4 ppb 12.8 ppb 19.9 ppb 39.8 ppb

 CH_4 uncertainties (at 1σ) determination according to the various simulation cases (requirements: 10 ppb).

Outline

- Introduction Ι.
- II. Description of the Uvsq-Sat NG space-based mission
- **III.** Methods for Evaluating the performances of GHG Instruments using SolAtmos
- IV. Results Application to the Uvsq-Sat NG mission

V.Conclusions & Perspectives

V. Conclusions & Perspectives

- The SolAtmos end-to-end simulator, along with its tools IRIS, OptiSpectra, and GHGRetrieval, has been implemented to evaluate the capabilities of monitoring greenhouse gases, particularly carbon dioxide and methane, from a space-based instrument.
- This simulator is especially used to assess the scientific performance of the Uvsq-Sat NG mission. This simulator is implemented to be applicable to other observation missions as well.
- To be even more efficient, the SolAtmos end-to-end simulator will need to fully integrate the SCIATRAN and 4A/OP radiative transfer models.
- Based on the SolAtmos simulator, the miniaturized spectrometer seems to have the potential to reach excellent accuracies above continental scene, especially in polar regions. These results seem to confirm the value of a constellation of small satellites for GHG monitoring.
- The method highlight the limits of such a miniaturized spectrometer: above oceans the signal seems too low to reach good accuracies with a nadir pointing. The idea is to optimize the integration time and to use the Sun's glint to increase the signal.

V. Conclusions & Perspectives

LATMOS credits

Thank you for your attention.

SolAtmos: end-to-end simulator for space-based GHG observation missions – Cannelle Clavier

Radiative transfer models

RTM	SR ¹	Spectral Accuracy	Atmosphere Geometry	
6S/6SV	VIS – NIR	2.5 nm	PP	
SCIATRAN	UV – FIR	< 0.2 nm on VIS and NIR	PP / PS / S	
4A/OP	NIR – FIR	$0.005{\rm cm}^{-1}$	/	
DART	VIS – FIR	$1 \rm{cm}^{-1}$	S	Wang
LBLRTM	VIS – LWIR	Line-by-line	S	
MODTRAN6	UV – LWIR	$0.2 \mathrm{cm}^{-1}$	PP	
Eradiate	VIS – NIR	Line-by-line, 1 nm, 10 nm	PP / S	
LibRadTran	UV – FIR	0.05 to 1 nm (MWIR)	PP / S	

References

Vermote et al. (1997) [18] Rozanov et al. (2014) [19] Scott and Chedin (1981) [20] and Gastellu-Etchegorry (2020) [21] Clough et al. (1981) [22] Berk et al. (1998) [23] https://www.eradiate.eu/ Mayer and Kylling (2005) [24]

IRIS tool

