New insights into the consequences of different interplanetary conditions on the near-Hermean environment

Laboratoire de Physique des Plasmas

Emanuele Cazzola⁽¹⁾, Dominique Fontaine⁽¹⁾, Ronan Modolo⁽²⁾ (1) Laboratoire de Physique des Plasmas (LPP) (2) Laboratoire ATMospheres, Observations Spatiales (LATMOS)

Magnétosphère de mErcure lors de TempêtEs sOlaires (METEO) IPI project

PNST : colloque scientifique & de prospective Marseille, 8-12 janvier 2024

BepiColombo Mission

MIO

Why do we need it ?

MPC

- Past visits to Mercury: MARINER-10 [fly-bys], MESSENGER [fly-bys + orbit]
 - \rightarrow single spacecrafts !
- BepiColombo: ESA-JAXA two orbiters mission :
 - Mercury Planetary Orbiter (MPO)
 - Mercury Magnetospheric Orbiter (MMO / MIO)
 - Launch: 20 October 2018
 - Arrival at Mercury: 5 December 2025
 - 9 (Earth-Venus-Mercury) fly-bys before operative phase
- First observations of the coupled Solar Wind Inner Magnetosphere dynamics !

BepiColombo insights

Global simulations insights

Magnétosphère de mErcure lors de TempêtEs sOlaires (METEO) project

What questions do we want to address ?

- → weak magnetic field + intense & highly variable interplanetary conditions
 - \rightarrow boundaries possibly squeezed close/into the surface ?
 - \rightarrow interplanetary particles precipitation rate dynamics ?
- \rightarrow planetary heavy ions dynamics (exosphere), such as Na, K, O, ...
 - \rightarrow How does their dynamics change along the orbit and with different SW velocity ?

\rightarrow possible presence of a current system

- \rightarrow intensity and pattern in such a different and dynamical magnetic environment ?
- \rightarrow where does it close to in absence of ionosphere ?
- $\rightarrow\,$ properties of bow-shock and foreshock
 - \rightarrow Quasi-radial properties under intense SW conditions
 - \rightarrow same structures (i.e., SLAMS or plasmoids) ?

\rightarrow Also ... how do all the above respond under extreme solar events ?

3D global hybrid simulations (LatHyS)

Interplanetary Environments

Scenarios feats

- → Comparing Aphelion vs Perihelion conditions
- → Comparing slow vs fast winds effects
- → Poorly simulated quasi-radial scenario
- $\rightarrow\,$ Comparing effects of different $D_p \mbox{ \& } M_A$

values from Sun+2022							
	Interplanetary Medium @ Mercury			Interplanetary Medium @ Earth			
	Aphelion SSW	Aphelion FSW	Perihelion SSW	Perihelion FSW	average		
B [nT]	15		45		6-10		
N [cm-3]	40		100		3-10		
V [km.s-1]	250	450	250	450	250-700		
T [K]	3e4 (β = 0.18)		1.5e5 (β = 0.26)		$\beta \geq 1$		
Clock angle	25 ⁰		17 ⁰		45 ⁰		
Cone angle	0 ⁰		0 ⁰		0 ⁰		
Dynamic pressure - D _p [nPa]	4.18	13.54	10.45	33.87	1-6		
Alfvénic Mach number - M_A	4.8	8.6	2.53	4.56	3-10		

$$M_A = \frac{V_{SW}}{V_A}$$
$$D_p = \rho_{SW} V_{SW}^2$$

Global Scale Magnetic System Dynamics

Aphelion Slow Solar Wind (low dynamic pressure and Alfvenic Mach number)

	15
N [cm-3]	40
V [km.s-1]	250
т [К]	3e4 (β = 0.18)
Clock angle	25
Cone angle	0
D _p [nPa]	4.18
M _A	4.8

y [RM]

- \rightarrow Development of an Earth-like magnetic system (BS & MP)
- → BS / MP well described by a paraboloid and by models * e.g., Winslow+ 2013
- $\rightarrow\,$ Foreshock and its effects on the bow-shock boundary
 - * Magnetosheath thinned and limited to one side
 - * Current possibly connected with magnetosphere

model by Winslow+ 2013

Global Scale Magnetic System Dynamics

Perihelion Fast Solar Wind (increasing dynamic pressure)

B[nT]

 N/N_{SW}

	45
N [cm-3]	100
V [km.s-1]	450
Т [К]	1.5e5 (β = 0.26)
Clock angle	17
Cone angle	0
D₅ [nPa]	33.87
M _A	4.56

- → Bow-shock highly compressed
- \rightarrow Bow-shock shape globally represented by a paraboloid, yet reduced size compared to model
- \rightarrow Departs from paraboloid description in the subsolar region
- \rightarrow Very thin magnetosheath
- → Intense foreshock

model by Winslow+ 2013

Precipitating Interplanetary Ions Flux

Planetary Maps

Precipitating Interplanetary lons Flux

Space distribution

- $\rightarrow\,$ Cusp precipitation peaks in all cases
- \rightarrow Cusp peaks
 - * displaced from meridian plane
 - * higher latitudes in SSW
 - * lower latitudes in FSW
 - * southern cusp larger for Aphelion
 - * northern cusp larger for Perihelion
- $\rightarrow\,$ Significant equatorial signatures in Perihelion
- → Upon severe conditions (PFSW), particles able $\frac{1}{15}$ to precipitate all over the subsolar region
 - \rightarrow expected outcome in case of solar events !

Precipitating Interplanetary Ions Flux

Energy distribution

E [eV]

- \rightarrow SW particles like collimated beam
- \rightarrow Magnetosheath particles hotter and more energetic
- \rightarrow Particles precipitating into southern cusps globally more energetic than those into northern cusps
- $\rightarrow\,$ E distribution more in line with Msh E distribution
- → Flux peaks E always < SW flux peak E

Conclusions & Outlook

What did we learn so far ?

- → Mercury's near-planet environment dynamics <u>highly affected</u> with the interplanetary conditions
 - \rightarrow different interplanetary conditions along its orbit \rightarrow significant different response
 - → difficult to predict it with statistical-based models
 - average conditions
 - mostly polar observations
 - difficult interpretation in certain regions
 - → importance of foreshock
 - strong influence bow-shock behavior
 - → planetary magnetic boundaries can be remarkably compressed (FSW and/or Perihelion)
 - \rightarrow interplanetary particles can interact with planet's surface :
 - from the polar cusps
 - but also at <u>equatorial level</u> in highly compressed scenarios
 - most of particles coming from magnetosheath
- → <u>multi-spacecraft missions</u> <u>global computer simulations synergy</u> for a <u>mutual predictive/orientative strategy</u>
- → in case of extreme solar events (CMEs or CIRs), the situation can become even more severe

Thank you !

Laboratoire de Physique des Plasmas