The Magnetopause: an almost tangential interface between the magnetosphere and the magnetosheath

Giulio Ballerini^(1,2), Laurence Rezeau⁽¹⁾, Gerard Belmont⁽¹⁾, Francesco Califano⁽²⁾

⁽¹⁾Laboratoire de Physique des Plasmas, École Polytechnique, France ⁽²⁾Dipartimento di Fisica, Università di Pisa, Italy

PNST 2024

Magnetopause: Global vs Local

In this study we focus on studying the internal structure of the discontinuity

What is the nature of the magnetopause?

Classic Theory of Discontinuities

Image Credit: Belmont et al, Introduction to Plasma Physics

*The linear version of the rotational discontinuity correspond to the MHD shear Alfven wave

B

 \mathbf{B}_{TI}

h

What is the nature of the magnetopause?

Classic Theory of Discontinuities

Tangential Discontinuity

- Only exception which mixes rotational and compressive features
- \succ Requires B_n=0 and V_n=0

Rotational Discontinuities

BTI

Image Credit: Belmont et al, Introduction to Plasma Physics

Classic theory of discontinuities is insufficient for describing the magnetopause

B₇

 \mathbf{B}_{TI}

Classic Theory of Discontinuities: equations

The separation between rotational and compressive discontinuities comes from:

.....
$$(V_{n2} - V_{n0})\mathbf{B}_{t2} = (V_{n1} - V_{n0})\mathbf{B}_{t1}$$

We defined:

$$V_{n0} = \frac{B_n^2}{\mu_0 \rho V_n} = \text{cst}$$

Comes from the tangential projections of

The momentum equation

➣ the Faraday-Ohm equation

Classic Theory of Discontinuities: equations

The separation between rotational and compressive discontinuities comes from:

$$(V_{n2} - V_{n0})\mathbf{B}_{t2} = (V_{n1} - V_{n0})\mathbf{B}_{t1}$$

Compressive discontinuity

$$\mathbf{B}_{t2} = \frac{V_{n1} - V_{n0}}{V_{n2} - V_{n0}} \mathbf{B}_{t1}$$

Rotational discontinuity

We defined:

 $V_{n0} = \frac{B_n^2}{\mu_0 \rho V_n}$

 $= \operatorname{cst}$

$$V_{n1} - V_{n0} = V_{n2} - V_{n0}$$

$$\bigvee$$

$$V_{n1} = V_{n2} = V_A$$

6

Classic Theory of Discontinuities: equations

The separation between rotational and compressive discontinuities comes from:

We defined:

Equations in the anisotropic case

As shown in Hudson [1971], the equation is changed in the anisotropic case:

We defined:

$$(V_{n2} - \alpha_2 V_{n0})\mathbf{B}_{t2} = (V_{n1} - \alpha_1 V_{n0})\mathbf{B}_{t1} \qquad \alpha = 1 - \frac{p_{\parallel} - p_{\perp}}{B^2/\mu_0}$$

Coplanar solutions still exists

- > The equivalent of the tangential discontinuity implies compression if $\alpha_1 \neq \alpha_2$
- No universal result giving the downstream state as a function of the upstream one independently of the phenomena inside the layer
- ➢ For thin layers (kdi ~ 1), the FLR effects are to be taken into account

The magnetopause normal

An accurate determination of the magnetopause **local** normal proves to be fundamental

- Separate tangential and normal components of conservation laws and the magnetic field
- Determine which terms are experimentally significant but not included in Classic Theory of discontinuities

..... For each time step inside the magnetopause

Momentum Equation

$$\rho \partial_t \mathbf{u} + \rho \mathbf{v} \cdot \nabla \mathbf{u} = -\nabla \cdot \mathbf{P} + \mathbf{J} \times \mathbf{B}$$

Has a component only along the normal in Classic Theory

The local normal using MMS satellites

- Reciprocal vectors
 - Firstly introduced in space plasma physics by **Chanteur [1998]**
 - Use to linear estimate the gradient of a vector field

$$\mathbf{G} = \operatorname{grad} \mathbf{B} \sim \sum_{s} \mathbf{k}_{s} \mathbf{B}_{s}$$

- The Minimum Directional Derivative (MDD) method
 - Shi et al [2005]
 - \circ Normal as the eigenvector with maximum eigenvalue of $G.G^T$

Assume that the structure can be fitted locally (*i.e.* in each small sliding window), by a two dimensional model:

$$\mathbf{G}_{fit} = \mathbf{e}_0 \; \mathbf{B}_{e0}' + \mathbf{e}_1 \; \mathbf{B}_{e1}'$$

We defined:

- \mathbf{e}_0 and \mathbf{e}_1 as two unit vectors in the plane perpendicular to the invariance direction
- $\mathbf{B'}_{e0}$ and $\mathbf{B'}_{e1}$ as the variation of the magnetic field along these two directions
- We choose here the M direction given by MVA as the invariant direction

Assume that the structure can be fitted locally (*i.e.* in each small sliding window), by a two dimensional model:

$$\mathbf{G}_{fit} = \mathbf{e}_0 \; \mathbf{B}_{e0}' + \mathbf{e}_1 \; \mathbf{B}_{e1}'$$

As for the MDD, the dyadic tensor is obtained from the 4-point measurements via the reciprocal vector method

$$\mathbf{G}=\sum_{s}\mathbf{k}_{s}\mathbf{B}_{s}$$

Assume that the structure can be fitted locally (*i.e.* in each small sliding window), by a two dimensional model:

$$\mathbf{G}_{fit} = \mathbf{e}_0 \; \mathbf{B}_{e0}' + \mathbf{e}_1 \; \mathbf{B}_{e1}'$$

As for the MDD, the dyadic tensor is obtained from the 4-point measurements via the reciprocal vector method

$$\mathbf{G} = \sum_{s} \mathbf{k}_{s} \mathbf{B}_{s}$$

Minimizing the difference between **G** and \mathbf{G}_{fit} by imposing $\nabla \cdot \mathbf{B} = 0$, we obtain the values of $\mathbf{B'}_{e0}$ and $\mathbf{B'}_{e1}$.

Assume that the structure can be fitted locally (*i.e.* in each small sliding window), by a two dimensional model:

$$\mathbf{G}_{fit} = \mathbf{e}_0 \; \mathbf{B}_{e0}' + \mathbf{e}_1 \; \mathbf{B}_{e1}'$$

As for the MDD, the dyadic tensor is obtained from the 4-point measurements via the reciprocal vector method

$${f G}=\sum_s {f k}_s {f B}_s$$

Minimizing the difference between **G** and \mathbf{G}_{fit} by imposing ∇ . **B** = 0, we obtain the values of $\mathbf{B'}_{e0}$ and $\mathbf{B'}_{c1}$.

Obtain a precise estimation of the magnetic normal and intermediate direction by applying the MDD to the fit matrix.

A statistical study

A database of 149 crossings has been selected from the one in Michotte De Welle et al. (2022).

From these database, we found the following distribution:

- 36.2% (54/149) of the crossings presents linear features.

- 3.4% (5/149) of the crossings presents circular features (rotational discontinuity).

- 18.8% (28/149) of the crossings presents radial features (compressional discontinuity).

- 41.6% (62/149) of the crossings could not be interpreted definitely as either of the three before.

Spatial distribution

Conclusions and Future works

Magnetopause is a typical example of "quasi-tangential" discontinuity where Finite Larmor radius (FLR) effects have a fundamental role on the magnetopause equilibrium.

The magnetopause is to the rotational discontinuity what the Kinetic Alfven wave (KAW) is to the standard MHD Alfven wave.

Future work

- Include FLR terms in the magnetopause model
- Study the structure by using global numerical simulations (using the Menura solver)

The Menura solver [Behar et al, 2022]

Menura is an hybrid particle-in-cell (PIC) solver

- > Kinetic description for ions
- > Fluid description for electrons
- Strongly parallelized and executed on multiple GPUs
- Written so that it is possible to work in the solar wind reference frame

Thank you for any feedback

Giulio Ballerini, Laurence Rezeau, Gerard Belmont, Francesco Califano

UNIVERSITÀ DI PISA

Statistics: magnetic vs particles normal

Simulations: current status

Global 3D simulations:

- ➢ Grid size dx=2.5di
- Box size 700x1500x1600 d_i
- Standoff magnetopause distance: 200d_i
- Waiting for resources to increase the mesh resolution

