

TWO CLASSES OF MAGNETOTAIL DIPOLARIZATION FRONTS OBSERVED BY MAGNETOSPHERIC MULTISCALE MISSION A STATISTICAL OVERVIEW

Laboratoire de Physique des Plasmas

PNST 2024 soboh.al-qeeq@lpp.polytechnique.fr

S. W. Alqeeq, O. Le Contel, P. Canu, A. Retinò, T. Chust, L. Mirioni, A. Chuvatin, R. Nakamura, N. Ahmadi, F. D. Wilder, D. J. Gershman, Yu. V. Khotyaintsev, P.-A. Lindqvist, R. E. Ergun, J. L. Burch, R. B. Torbert, S. A. Fuselier, C. T. Russell, H. Y. Wei, R. J. Strangeway, K. R. Bromund, D. Fischer, B. L. Giles, and Y. Saito

Dipolarization Front (DF)

- Sharp increase in the northward component of the magnetic field (Zdirection)
- associated with a fast plasma flow
- can be generated by reconnection or kinetic ballooning interchange instability.
- DF corresponds to a boundary between a relatively cold and dense plasma at rest and a hot tenuous fastly moving plasma.

- **Typical DF properties** V(DF) ~ 200 km/s Thickness ~ 500 km Crossing time ~ 2.5 s
- [e.g., Runov et al., 2009 using THEMIS; Fu et al., 2012 using Cluster]

DF/fast flow properties [e. g., Runov et al., 2009, Sergeev et al., 2009]

MVAB analysis on 4 s/c averaged data between (16:47:45/16:48:00)

LMN frame of DF: L =(0.14, 0.63, 0.76) M=(0.13,-0.78, 0.62) N=(0.98, 0.01, -0.19)

3

The main objective

- In order to extend these case study results, I have carried out a statistical analysis over the full 2017 magnetotail season.
- In particular, the energy conversion process and its homogeneity at electron scales are investigated

Selection criteria : A statistical study of DFs

Alqeeq et al., JGR 2023

- More than 800 "possible DF" events detected near the Earth's magnetotail equator (|Bx|<5nT), using an AIDApy tool requesting Bz and Vi increases and Ne decrease.
- This first automatic selection is then adjusted manually with the following criteria leading to only 132 DF events:
- Burst mode (partmoms) data are available at least 30s before and after the DF. The head of the DF denotes the time t0.
- **Bz** increase > 5 nT
- Vi > 150 km/s
- N_{e,i} decrease
- **T**_{para,e-i}~**T**_{perp,e-i} increases.

Methods

• MVAB and TA methods are applied on magnetic field data. They give similar front normal.

- MVAB was set to be:
 - L : always oriented northward M: directed dawnward N: earthward
- Almost no preferential directions of propagation along y and z.
- Ny: ~ (+) 54% , ~ (-) 46%
- Nz: ~ (+) 60% , ~ (-) 40%
- VN: ~200 km/s

Two classes of magnetotail **DIPP** DFs

- Class I "classic type" (74.4%) corresponds to a slow decrease of the magnetic field after the DF and is associated with smaller ion velocity and hotter plasma [e. g., Schmid et al.,2015; Huang et al.,2015; Yao et al.,2015; Zhong et al.,2019].
- **Class II "new type"** (25.6%) has the same time scale for the rising and the falling of the magnetic field (a bump) associated with a minimum of ion and electron pressures and faster velocity [S. WALQEEQ et al.,2022].

An overview of the Class I and Class II events

 Class I DF locations and propagations are relatively random

 Class II DF have preferentially duskward locations and propagations with larger velocities.

Equatorial XY GSE Plane

8

9 Current density comparisons MMS - 4 Spacecraft average at 0.3s

For both classes:

Small values but good agreement within <10nA/m2

Ion diamagnetic current is dominant (~72%)

In Class II the reversal in Jpart_M (E) & Jcurl_M (D) is due to the reversal of the diamagnetic current (C), dominated by ions (B)

¹⁰ Ion Ohm's Law

For both classes **in the N direction, ions are decoupled** (D) **mostly by the Hall electric field** (G) but electron pressure could also contribute (assuming non-zero curl) (A).

For class II in the M direction, ions are decoupled (C), but the Hall field (median ~ -1.6 mV/m, mean +0.8 mV/m) suggests that the contribution from the electron pressure gradient could be quite large too (~+3.4 mV/m, +1 mV/m, respectively).

Energy conversion

MMS - 4 Spacecraft average at 0.3s

BHPP

11

- For both classes ahead of DF, in the s/c frame, Jpart.E >0 Dissipation (C) (energy is dissipated from the electromagnetic field to the particles).
- For class II behind DF, in the s/c frame, Jpart.E <0 Dynamo (C) (the energy is transferred from the particles to the electromagnetic field).
- For both classes ahead of DF, in the ion & electron frames, Jpart.E'<0 Dynamo (D) (energy goes from particles to field).
- In Class II the reversal of Jpart.E (C), in the s/c frame is due to the reversal of the diamagnetic current.

¹² Standard Deviation analysis for E' & Jpart

Compute the standard deviation (SD)

normalized by its error bar:

 $SD(X)/\Delta X = \sqrt{\sum_{i=1}^{4} (X_i - \langle X \rangle)^2/4}/\Delta X$

 $\label{eq:X} \begin{array}{l} <\!\!\mathrm{X}\!\!> : \mbox{The four spacecraft average of the X component} \\ \Delta X & : \mbox{Respective estimated error bar} \\ \Delta E' & \sim \!\! 1.7 \mbox{ mV/m} \\ \Delta J & \sim \!\! 6.8 \mbox{ nA/m2} \end{array}$

 For both classes normalized SD of E' fields is about 1 for x and y components (A & B) whereas SD of current densities is always smaller than 1 for all components.

Thus:

 These statistical results confirm that the non homogeneity comes from the E' field as shown by Alqeeq et al. 2022 for six DF events.

Conclusion (I)

For the full magnetotail season of 2017 (132 DF events):

- Class I "classic type" (74.4%) corresponds to a slow decrease of B after the DF and is associated with smaller ion velocity and hotter plasma.
- Class II "new type" (25.6%) has a bump B profile associated with a minimum of ion and electron pressures and faster velocity as shown in Alqeeq et al. 2022, and it is found mostly on the duskside.
- For both categories we found a good agreement between current densities calculated from particles, Curl B and Jdia_M (single S/C method).
- For both categories we found that ions are mostly decoupled from the magnetic field by the Hall fields.

The non- zero curl of the **electron pressure gradient term is also contributing to the ion decoupling and responsible for an electron decoupling** at DF.

Conclusion (II)

Summary of class I and class II signatures

Physical quantity	Class I	Class II
B_z or B_L	fast increase then slow	fast increase then fast decrease
	decrease	"bump"
$P_{i,e} \ \& \ N_{i,e}$	monotonous decrease	minimum or "hole"
$\mathbf{J} \cdot \mathbf{E} (s/c \text{ frame})$	>0 dissipation	>0 dissipation then <0 dynamo
$\mathbf{J} \cdot \mathbf{E}^{'}$ (fluid frame)	<0 dynamo	<0 dynamo
Geometry	$\begin{array}{cccc} 2\mathrm{D} & E_N' & \sim & E_M' & \sim \\ 0.8 \ \mathrm{mV/m} \end{array}$	2D $E_N^\prime \sim E_M^\prime \sim 1.2 ~{\rm mV/m}$
Homogeneity at elec-	$N_{O}(>1)$	$N_{O}(>1)$
tron scales $SD(E')$		

The electron pressure gradient term could also contribute (assuming a non-zero curl) to the ion decoupling and lead to the electron decoupling.

Merci de votre attention

Energy conversion (I)

BLPP

In s/c frame:

- "Dissipation" ahead of the front, the energy is transferred from the electromagnetic field to the particles
 J.E ~ +0.023 nW/m³.
- "Dynamo" behind the front, the energy is transferred from the particles to the electromagnetic field J.E ~ - 0.043 nW/m³.
- Convective field (EM<0~ vxB) dominant

BY

Sign(J.E) ~ sign(Jpart,M)

⁵ Energy conversion (II) 16:47:30-16:48:40 UT

In Ion & electron frames:

- => Good confidence with all J.E'=J.(E+vi,exB) calculations.
- J.E'>0, Dissipation (energy goes from field to particles) ~ after the DF (from single s/c MSS1, 3)
- J.E'<0, Dynamo (energy goes from particles to field) ~ at DF (from 4 s/c and all singles s/c)
- These results are consistent with [Yao et al., 2017].

Standard Deviation analysis for E' & Jpart

Compute the standard deviation (SD) **normalized** by its error bar:

$$SD(X)/\Delta X = \sqrt{\Sigma_{i=1}^4 (X_i - \langle X \rangle)^2/4} / \Delta X$$

- <X> : The four spacecraft average of the X component
- $\Delta X \;\; : Respective estimated error bar$
- ΔE'~1.7 mV/m
- ΔJ ~6.8 nA/m2

Larger **normalized** SD for E' field than for Jpart suggest that non homogeneity comes from the E field.

Case study summary [Algeeq et al., PoP, MMS special issue, 2022]

Good agreement between current densities calculated from particles and curl B.
Ions are decoupled at DF mostly due to Hall field but also possibly due to electron pressure
gradient assuming a non- zero curl of of this term.

- In the frame of the satellite, the energy is dissipated (J.E>0, dissipation or load region) ahead of the DF but transferred from the plasma to the field behind the front (J.E<0, dynamo or generator region).</p>
- In the fluid frame, the energy is transferred from the plasma to the fields (J.E'<0, dynamo) as also found in a previous MMS single DF event [Yao et al., 2017].</p>
- The energy conversion is not homogeneous at the electron scale (scale of the tetrahedron) mostly due to the E field fluctuations which are likely related to LHD waves [e. g., M. Hosner et al. 2022].