What can we learn about magnetic reconnection using laser-induced High Energy Density Plasmas ?

J. Fuchs¹, S. Bolanos¹, C. Courtois², A. Grisolet², <u>R. Smets</u>³, et al.

¹LULI, ²CEA, ³LPP...

Programme National Soleil-Terre : 8-12 janvier 2024

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 1/20

Magnetic reconnection in solar arches

3D (revised) standard model [Holman 2016, JGR] :

• Magnetic field lines emerge in cold sun spots

- \rightarrow asymmetric & unparallel ribbons (feet of *B*-lines)
- \rightarrow involve an inhomogeneous shear of the loops
- \rightarrow reconnection propagate along the arcade

Magnetic reconnection in planetary magnetosphere

• Solar wind drives magnetosphere dynamics [Masters 2018, GRL] :

- \rightarrow magnetic reconnection spreads along a line
- \rightarrow thining of the current sheet driven by solar wind pressure
- \rightarrow viscous-like interaction (like KH instability) is secondary

Current sheets in plasma physics

• Ubiquitous in the universe [Ji et al. 2022, Nat. Rev. Phys.] :

ightarrow could be a PeVatron for cosmic rays, black-hole jets...

Big picture of 2D magnetic reconnection

- Ohm's law : $\mathbf{E} = -\mathbf{V} \times \mathbf{B} - \frac{1}{en} [\mathbf{j} \times \mathbf{B} - \boldsymbol{\nabla}. \mathbf{p}_e] + \eta \mathbf{j} - \eta' \Delta \mathbf{j} + m_e d_t \mathbf{j}$
- Efficiency of reconnection measured by $E' = E/B_0 v_A$
- \rightarrow Ideal term in the MHD region
- \rightarrow Hall term in the lon diffusion region (control E')
- \rightarrow Agyrotropic pressure term in the electron region (control J_z)

Pending questions

- What is the origin of the local dissipation?
- What is the importance of the 3D geometry?
- How efficiently plasma and *B*-field are transported through the reconnection site?
- How and where do X lines form in the current sheet?
- X line formation: local spreading in a global context?
- What controls their length?
- How do they respond to the temporal variations of external conditions?
- What are the respective roles of large scale inhomogeneities and local kinetic effects?

Magnetized plasma loop using a ns-laser

- Plasma produced by a ns-laser on a solid target
- B-field produced by Biermann-battery effect

 \Rightarrow The B-field produced on <u>front face</u> is clock-wise oriented :

$$\partial_t \mathbf{B} = -\frac{1}{en_e} \nabla n_e \times \nabla T_e$$

Reconnection between 2 magnetized plasma loops

• Distance between the 2 focal spots \geq twice the plume radii

- The current sheet is building up during the irradiation
- Lundqvist number $S \sim 10^3$ (with Spitzer-Harm resistivity)
- \rightarrow aspect ratio of the current sheet $L/\delta <$ 50
- \rightarrow we then are not in the plasmoid regime
- Curvature of the B-field in favour of single X-type reconnection
- Numerical approach with a 2D Hybrid-PIC code

Lasers configurations (first shot - 2019) on LMJ

Lasers parameters

	LMJ	PETAL
Pulse duration	5 ns	0.7 ps
Energy	12 kJ	400 J
Solid target	Au - 5 μ m	Au - 25 μ m
Wave length	351 nm	1053 nm

- we used 6 quads : C28, C29, C10, both H & B
- laser incidence depends on the quad for experimental reasons
- \rightarrow energy is then modulated for somewhat similar plasma loops
- proton probe incidence of 34°
- hot spots separation : 7.5 mm & 1.5 mm for reconnection
- a total of 7 shots (1 on Ti-foil)
- 3 times for 2-loops and 3-loops reconnection : 2.1, 3.2 & 4.3 ns

Plasmas parameters

• From fci2 simulation (for a 1-plume plasma) :

Plasma plume	Proton beam
\sim 600 nT	
\sim 4 $ imes$ 10 27 m $^{-3}$	
$\sim 2 imes 10^5 \ { m m.s^{-1}}$	$\sim c$
\sim 100 eV	\sim 42 MeV
$eta_e=$ 0.5, $eta_i=$ 0.02	
\sim 300 $ ightarrow$ 900 μ m	
\sim 4 μ m	
~ 17 ps	
$\sim 2 imes 10^5 \ { m m.s^{-1}}$	
	$\begin{array}{l} \mbox{Plasma plume} \\ \sim 600 \ \mbox{nT} \\ \sim 4 \times 10^{27} \ \mbox{m}^{-3} \\ \sim 2 \times 10^5 \ \mbox{m.s}^{-1} \\ \sim 100 \ \mbox{eV} \\ \beta_e = 0.5, \ \beta_i = 0.02 \\ \sim 300 \rightarrow 900 \ \mbox{\mu m} \\ \sim 4 \ \mbox{\mu m} \\ \sim 17 \ \mbox{ps} \\ \sim 2 \times 10^5 \ \mbox{m.s}^{-1} \end{array}$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 11/20

- \rightarrow close to the $\beta \sim 1$ regime
- \rightarrow magnetization parameter $\sigma \ll 1$

Diagnostics (LMJ experiments in 2019)

- Proton radiography using PETAL on a solid target
- \rightarrow a proton beam is created with ps-laser on solid target by TNSA
- \rightarrow collected on a stack of Radio-Chromic-Films (resolved in energy)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 12/20

 \rightarrow the proton dose give insights on the path-integrated B-field

• DMX

- \rightarrow integrated spectra (arbitrary units) depending on time
- DP1 & DP4
- \rightarrow provides an image of the focal spot

B-field pictured by proton-radiography

- Strong $B \Rightarrow$ before Reconnection : "open mouth"
- Moderate $B \Rightarrow$ during reconnection : "closed mouth"
- no $B \Rightarrow$ after reconnection : nothing !

Synthetic RCF for 10 MeV proton beam

- \rightarrow a "mouth" open when B field is compressed
- \rightarrow but closes when reconnection operates (and decrease B)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proton radiographies from LMJ 2019 experiment

<□▶ < □▶ < □▶ < 三▶ < 三▶ 三三 のへで 15/20

B-field reconstruction using problem solver

• Maxwell-Faraday : relation between magnetic flux $\partial_t \phi$ and E

• weaker B-field for 2-plumes & 3-plumes : reconnection operates ! $\rightarrow \partial_t \phi = \partial_t \iint B_y \, dx dz = 2.5 \pm 0.6 \, \text{T.mm}^2.\text{ns}^{-1}$ \rightarrow frow Faraday law, $\partial_t \phi = \int E dz \sim \lambda E$ $\rightarrow \int B_y \, dz = 13 \, \text{T.mm}$ and $V_0 \sim v_A = 400 \pm 130 \times 10^3 \, \text{m.s}^{-1}$

- reconnection rate $E' = 0.48^{+0.40}_{-0.20}$ (2-plumes case)
- \rightarrow <u>Fast reconnection</u> (even very fast...)

Lasers configurations (2017) at LULI2000

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ のへで 17/20

Streaked Optical Pyrometry

- \rightarrow Emissivity increases with density because of the pile-up
- \rightarrow Emissivity decreases for hot plasma

Hall term in the ion diffusion region

- (Hall) E_{XY} electric field associated to J_Z and B_{XY}
- J_Z grows at the tip of each loops when colliding \rightarrow quadrupolar B_Z grows because E_{XY} is no more curl-free
- J_{XY} associated to this out-of-plane magnetic field \rightarrow carried by electrons because protons are demagnetized

Concluding remarks

- Competiting effects of Biermann-battery and reconnection
- \rightarrow B-field created by Biermann-battery : source term
- \rightarrow B-field is then reconnected : loss term
- We already measured fast reconnection : E' > 0.48
- \rightarrow first measure (of a lower value) of a reconnection rate
- One can play with target geometry for guide-field
- \rightarrow larger magnetic compression
- \rightarrow larger electron density, smaller electron temperature
- One can play with target geometry for Quadrupolar B-field \rightarrow investigated in 2015... to be published !