

Observation and Analysis - The case of lo during Perijove 5 South

Abstract

At Jupiter, part of the auroral radio emissions are induced by the Galilean moons lo, Europa and Ganymede. Until now, except for Ganymede, they have been only remotely detected, using ground-based radio-telescopes or electric antennas aboard spacecraft. The polar trajectory of the Juno orbiter allows the spacecraft to cross the range of magnetic flux tubes which sustain the various Jupiter-satellite interactions, and in turn to sample in situ the associated radio emission regions. In this study, we focus on the detection and the characterization of radio sources associated with lo, Europa and Ganymede. Using electric wave measurements or radio observations (Juno/Waves), in situ electron measurements (Juno/JADE-E), and magnetic field measurements (Juno/MAG) we demonstrate that the Cyclotron Maser Instability (CMI) driven by a loss-cone electron distribution function is responsible for the encountered radio sources. We confirmed that radio emissions are associated with Main (MAW) or Reflected Alfvén Wing (RAW), but also show that for Europa and Ganymede, induced radio emissions are associated with Transhemispheric Electron Beam (TEB). For each traversed radio source, we determine the latitudinal extension, the CMI-resonant electron energy, and the bandwidth of the emission. We show that the presence of Alfvén perturbations and downward field-aligned currents are necessary for the radio emissions to be amplified

C. K. Louis^{1,}, P. Louarn, B. Collet, N. Clément, S. Al Saati, J. R. Szalay, V. Hue, L. Lamy, S. Kotsiaros, W. S. Kurth, C. M. Jackman, Y. Wang, M. Blanc, F. Allegrini,

J. E. P. Connerney, D. Gershman Paper published in "JGR Space Physics", <u>https://doi.org/10.1029/2023JA031985</u>

corentin.louis@obspm.fr

Results for the Jupiter-Io, Jupiter-Europa and Jupiter-Ganymede Radio Emissions Source Crossings

Moon	Io	Io	Io	Io	Europa	Ganymede	Ganymede	\sim $^{-5}$ $^{-1}$
Hemisphere	South	North	North	North	North	North	South	ed grd
Perijove	PJ5	PJ5	PJ6	PJ29	PJ12	PJ20	PJ30	
Date (Year-Month-Day)	2017-03-27	2017-03-27	2017-05-19	2020-09-16	2018-04-01	2019–05–29	2020-11-08	2 10 ⁻⁶ -
Time interval (HH:MM:SS)	09:30:51–59	around 08:34:40	05:39:31–39	02:00:34–36	around 09:15:44	07:37:25-30	around 02:55:02	
JADE data	Yes	No	Yes	Yes	No	Yes	No	JADE data availability
f_{\min} (MHz)	4.7	20.8	12.8	27.7	6.7	6.5	1.8	Minimal frequency reached by the radio emission (in MHz)
$f_{\text{emission}} \left(\% > f_{ce}\right)$	$3 - 18 \times 10^{-3}$	$3-29 \times 10^{-3}$	$2-14 \times 10^{-3}$	$5-40 \times 10^{-3}$	$7 - 15 \times 10^{-3}$	$5-21 \times 10^{-3}$	$5-40 \times 10^{-3}$	Frequency bandwidth of the emission (in percentage above fce
Intensity max. (V ² .m ⁻² .Hz ⁻¹)	3×10^{-6}	3×10^{-6}	8×10^{-8}	2×10^{-6}	1×10^{-7}	1×10^{-6}	3.5×10^{-9}	Maximum intensity & estimated flux of the emission $\frac{1}{7}$ (based on Louis et al., 2021; Louis et (als, 2023) 1e7
Estimated flux max. (W.m ⁻² .Hz ⁻¹)	4.0×10^{-6}	1.08×10^{-6}	2.5×10^{-7}	7.7×10^{-6}	2.4×10^{-7}	2.4×10^{-6}	7.2×10^{-9}	
Electron energy (keV)	1–15	2–20	1–5	3–10	3–8	4–15	2–20	Electron energy (in keV)
Opening angle (°)	74–85°	74–85°	77–86°	73–84°	79–84°	76–83°	74–85°	Opening half-angle of the beaming cone (in °)
Radio source size (km)	360 ± 45	500 ± 100	415 ± 50	250 ± 50	200 ± 49	250 ± 50	75 ± 50	Radio sourcē size (in km)
$\Delta \lambda_{ m Alfvén}$ (°)	3.3°	10.8°	87.4°	7.8°	-10.5°	-1.8°	-7°	Downtail distance to the MAW (Based on Hue et al., 2023) & associated UV emission (MAW: Main Alfvén Wing: RAW: Reflected Alfvén Wing: TEB: Transhemispheric Electron Beam)
Associated UV emission	RAW	RAW	RAW	RAW	TEB	MAW	TEB	
				vth ra				
Summary & Discu	ssions							
 All Jupiter-moon radio emiss Only loss-cone type electron Electron energy: [1-20] keV Half-opening angle of the besite Value in agreement with received 	sions are shown n distribution fu eaming cone: [7 ent detailed rem re colocated w	Inctions trigger the (4°-86°] note observations	triggered by the emission with the NDA	the CMI (Lamy et al., 2 ootprints	.0 ⁻⁷ 	 Difference For Euro al., 2023 CMP does r If fpe/fce is rate. Too loss of p Presence 	in intensity: rela pa: non-monoto 0.02 not trigger dete s too low: integra o low electron de recipitating elect e of an Alfvénic a	ated to different type of electron distributions? $\Delta = \frac{\Delta \lambda_{\text{Alfvén}}}{\Delta \lambda_{\text{Alfvén}}} \sim 4^{\circ}$, broadband $>\Delta \lambda_{\text{Alfvén}} \sim 4^{\circ}$ (Rabia et ctable emission every time: $\Delta \omega$ ation of the $\delta f/\delta v_{\perp}$ gradient gives an insufficiently high growth ensity in the up-going electron population due to an enhanced trons in the Jovian ionosphere?) acceleration process and FAC required?
 The crossed radio sources coincide with downward field-aligned currents and Alfvén perturbations Flux density: In the -1.8° < Δλ_{Alfvén} < 10.8° interval: [1–8] × 10⁻⁶ W.m⁻².Hz⁻¹ Long distance downtail (Δλ_{Alfvén}=87.4°): decrease of the intensity (2.5×10⁻⁷ W.m⁻².Hz⁻¹) Emissions associated with TEB: lower intensity (7.2×10⁻⁹ and 2.4×10⁻⁹ W.m⁻².Hz⁻¹) 						Accel	erated electron b	beams created by repeated Fermi acceleration by field-aligned

F